
INTERFACE TECHNOLOGY

������������

�	
�	�
��������������������	�

������	�����	
��	���
�

����

����

����

���

���!

�����

�����

�����

��� �

���!�

User's Manual

IO50 / IO100 Series
Digital I/O Modules

���

�������
�		
��
����

�������
���

	
�
������

���

�������
�		
��
����

��������
���

	
�
������

�����������

	
��������
��
�����������

�������������������������

Record of Changes

Entered By
Title or

Brief Description
Date of
Change

Change
No.

Original Issue

Expanded coverage to include IO50 Series.

Corrected driver and receiver data, Appendix A, pg A-1

Added App/Tech Note section to manual

Revised pg 1-4 (specifications); revised tables B-1 and B-2 of
Appendix B

Revised pgs 6-7 - 6-13 (Figs 6-2 - 6-8) and pg A-2, changed
mating connector data.

Changed pg 1-1, Table 1-1. Changed pgs 1-2 and 1-3 (IO53 and
IO130), (IO54 and IO140). Changed pg 1-5, table at top of page.
Changed pgs 6-9 thru 6-14 (figs 6-4 thru 6-9). Fig D-1, changed
from "Connector D (IO130 only)" to "Connector D (IO130-002
only)". Corrected typo errors on pgs D-2 and D-3.

Apr, 1997

Jan 10, 2000

Jan 16, 2001

Jun 15, 2001

Oct 29, 2001

Feb 17, 2004

Apr 28, 2005

Rev. 01

Rev. 02

Change 1

Change 2

Change 3

Change 4

Change 5

Factory

Factory

Factory

Factory

Factory

Factory

Factory

IO50 / IO100 User's Manual

Proprietary Notice

This document, and the technical information contained herein, are proprietary of Interface
Technology and shall not, without the express written permission of Interface Technology, be
used in any form or part to solicit competitive quotations. The information provided herein may
be used for operational purposes only, or for the purpose of incorporation into technical specifi-
cations or other documents which specify procurement from Interface Technology

DISCLAIMERS

Interface Technology, Inc. makes no warranty of any kind with regard to this material, includ-
ing, but not limited to, implied warranties or fitness for a particular use or purpose.

Interface Technology, Inc. shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the performance or use of this material.

Interface Technology, Inc. reserves the right to make changes to its products and to the content
of this manual without notice.

IO50 / IO100 User's Manual i

Rev. 02Interface Technology

Table of Contents

Contents

Chapter 1
General Information

About This Manual .. 1-1
Arrangement of Contents .. 1-1
Applicability ... 1-1
Supersedure Notice ... 1-1

Equipment Description .. 1-2
Programming Formats ... 1-2
Autonomous Operation ... 1-2
The IO130 and IO53 ... 1-2
The IO54 and IO140 ... 1-2

Indicators and Connectors ... 1-3
LEDs ... 1-3
Connectors .. 1-3

Specifications .. 1-4

General .. 2-1
Operating Modes ... 2-1

Basic Input/Output Mode .. 2-1
Defined Test Modes .. 2-1
Register Access Mode... 2-1

Basic Test Mode .. 2-2
Defined Test Mode .. 2-3
Block Handshake Tests .. 2-4
Programmed I/O Handshake Tests .. 2-4
Block Timed Tests ... 2-5
Programmed Timed Tests .. 2-9
Memory Emulation test ... 2-9
Register Access Mode ... 2-12
Data Organization and Memory Allocation .. 2-13
Vectors ... 2-13
Fields ... 2-14
Front Panel Connectors ... 2-15

Data Pins ... 2-16
External Tristate Control Pins ... 2-16
Request Handshake Control Pins .. 2-17
Acknowledge Handshake Control Pins... 2-18
Power Pins .. 2-19

VXI/VME Connections ... 2-19
VME Interrupt Request Connections .. 2-19
TTL Trigger Connections ... 2-19

Chapter 2
Functional Description

ii IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Table of Contents

Chapter 3
Command Set

SCPI Command Syntax ... 3-1
Standard Commands for Programmable Instruments 3-3
ABORT .. 3-5
FIELD .. 3-6

:DEFINE ... 3-7
:PINASSIGNMENT ... 3-8

:NAME .. 3-9
:TRISTATE ... 3-10
:TRISTATE? ... 3-11
:DELETE .. 3-11
:CATALOG? ... 3-12

INITIATE... 3-13
:INPUT .. 3-14
:OUTPUT .. 3-15
:BLOCK .. 3-16

TEST ... 3-17
:DEFINE ... 3-18

:MEMEMULATION ... 3-18
:SIZE .. 3-19

:BLKOUTHANDSHAKE .. 3-20
:SIZE .. 3-21

:BLKINHANDSHAKE .. 3-22
:SIZE .. 3-23

:BLKOUTTIMED .. 3-24
:SIZE .. 3-25

:BLKINTIMED .. 3-26
:SIZE .. 3-27

:PRGIOHANDSHAKE .. 3-28
:PRGIOTIMED .. 3-29

:NAME .. 3-30
:STATUS ... 3-31
:DELETE .. 3-32
:CATALOG? ... 3-32

:HANDSHAKE ... 3-33
:REQUEST ... 3-33

:INPUT ... 3-34
:INPUT? ... 3-35
:OUTPUT... 3-36
:OUTPUT? ... 3-36

:ACKNOWLEDGE .. 3-37
:INPUT ... 3-38
:INPUT? ... 3-39
:OUTPUT... 3-40
:OUTPUT? ... 3-41

:TIMEOUT ... 3-43
:INPUT ... 3-44

IO50 / IO100 User's Manual iii

Rev. 02Interface Technology

Table of Contents

:INPUT? ... 3-45
:OUTPUT ... 3-46
:OUTPUT? ... 3-47

:ADDR .. 3-48
:ADDR? .. 3-48
:FREE? .. 3-49

VECTOR ... 3-50
:COUNT .. 3-51
:DATA ... 3-51

:VALUE .. 3-52
:VALUE? .. 3-53
:RADIX .. 3-54
:FIELD .. 3-55

SYSTEM ... 3-56
:ERROR? .. 3-56
:VERSION? .. 3-57
:FIELD .. 3-58
:FIELD? .. 3-58
:TEST .. 3-59
:TEST? .. 3-59
:LEARN .. 3-60
:LEARN? .. 3-61
:TRISTATE?.. 3-62

STATUS ... 3-63
:OPERATION ... 3-66

:EVENT? .. 3-66
:CONDITION? ... 3-67
:ENABLE ... 3-68
:ENABLE? ... 3-68
:TEST ... 3-69

:EVENT? ... 3-69
:CONDITION?... 3-70
:ENABLE ... 3-71
:ENABLE? ... 3-71
:ISUMMARY1 ... 3-72

:EVENT? ... 3-72
:CONDITION? .. 3-73
:ENABLE .. 3-74
:ENABLE? .. 3-74

:ISUMMARY2 ... 3-75
:EVENT? ... 3-76
:CONDITION? .. 3-76
:ENABLE .. 3-77
:ENABLE? .. 3-77

:ISUMMARY3 ... 3-78
:EVENT? ... 3-78

iv IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Table of Contents

:CONDITION? .. 3-79
:ENABLE .. 3-80
:ENABLE? .. 3-80

:ISUMMARY4 ... 3-81
:EVENT? ... 3-82
:CONDITION? .. 3-82
:ENABLE .. 3-83
:ENABLE? .. 3-83

BASICMODE .. 3-84
:DEFINE ... 3-85

:INPUT ... 3-86
:OUTPUT ... 3-87

:CATALOG? ... 3-88
:CLEAR .. 3-89
:INPUT? .. 3-89
:OUTPUT .. 3-90
:OUTPUT? .. 3-91
:MODE .. 3-92

:SLAVE... 3-93
:GROUP ... 3-94

:MASTER ... 3-95
:GROUP ... 3-96

:STANDALONE .. 3-96
:MODE? .. 3-97

*CLS .. 3-100
*ESE .. 3-100
*ESE? .. 3-101
*ESR? .. 3-101
*IDN? .. 3-102
*OPC ... 3-102
*OPC? .. 3-103
*RCL ... 3-103
*RST .. 3-104
*SAV .. 3-104
*SRE .. 3-105
*SRE? .. 3-105
*STB? .. 3-106
*TRG ... 3-106
*TST? .. 3-107
*WAI .. 3-107

Register Based Operation .. 4-1
Register Programming Bit Definitions .. 4-1

Data Input and Output Registers (0x20-2F Read/Write) 4-1

IEEE 488.2 Mandatory
Commands

Chapter 4
Register Access

Change 2

IO50 / IO100 User's Manual v

Rev. 02Interface Technology

Table of Contents

Control Registers ... 4-3
Output Latch and Trigger 2 Generation (0x30 Write) 4-3
Input Latch and Trigger 1 Generation (0x31 Write) 4-3
Request Handshake Polarity Control (0x33 Write) 4-3
Output Acknowledge Handshake Signal Control (0x34 Write) 4-4
Output Request Handshake Status (0x34 Read) 4-4
Input Acknowledge Handshake Signal Control (0x35 Write) 4-4
Output Interrupt Mask and Inverted Acknowledge

Control (0x36 Write) .. 4-5
Input Interrupt Mask and Inverted Acknowledge

Control (0x37 Write) .. 4-5
Output Latch Strobe Select Control (0x38 Write) 4-6
Input Latch Strobe Select Control (0x39 Write) 4-6
Input Latch Strobe Select Control (0x39 Write) 4-6
Tristate Polarity (0x3A Write) and Output Control (0x3C Write) 4-6
Tristate Enable Readback (0x3C Read) .. 4-7
Trigger Input/Output Select (0x3F Write) .. 4-7

Memory Emulation .. 5-1
ROM Emulation .. 5-2
RAM Emulation .. 5-4
ROM Emulation with Programmed I/O .. 5-6
Techniques for Clocking With Data Pins .. 5-7
Output and Input Testing of Memory Devices .. 5-7
Testing Memory Mapped I/O Control Logic ... 5-9
Counter or FIFO Testing.. 5-13

Scope of Chapter ... 6-1
Unpacking and Inspection ... 6-1
Installation ... 6-1

Logical Addressing ... 6-1
Slot Dependency .. 6-2
Calibration ... 6-2
Basic Operation ... 6-3

Self-Test .. 6-3
Basicmode I/O ... 6-3
Running and Stopping ... 6-6

Pinouts ... 6-6

Specifications ... A-1
Drivers and Receivers ... B-1
Error Codes ... C-1
Programming Instructions for High Voltage Switching Option D-1

IO50/100-10 .. Using IO50 and IO100 Backplane Voltages

Chapter 5
Applications

Chapter 6
Installation

Appendix A
Appendix B
Appendix C
Appendix D

AppNotes & TechNotes

Change 2

vi IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Table of Contents

(THIS PAGE INTENTIONALLY LEFT BLANK)

IO50 / IO100 User's Manual 1-1

Rev. 02Interface Technology

Chapter 1: General Information

���������������	

General Information

About This Manual
This manual provides installation and operation information for the Interface Technology IO50 series and
IO100 series Digital I/O Modules. Information contained herein is intended for use by technical personnel
involved in the actual installation and operation of the subject modules.

Arrangement of Contents

Information contained in this manual is arranged in six chapters, as follows:

o Chapter 1 General Information
o Chapter 2 Functional Description
o Chapter 3 Command Set
o Chapter 4 Register Access
o Chapter 5 Applications
o Chapter 6 Installation and Basic Operation

Applicability

The information contained in this manual covers ten equipment configurations, as listed in Table 1-1. Differ-
ences, if any, between this equipment and the actual equipment supplied are covered by Difference Data
included at the front of this manual.

Supersedure Notice

This manual supersedes Interface Technology IO100 Digital I/O Module User's Manual Rev. A.1.00 in its
entirety.

Model

IO50
IO51
IO52
IO53
IO54
IO100
IO110
IO120
IO130
IO130-002
IO140
IO140-002

I/O Channels

64
64
64
30 Outputs + 32
32 Diff. I/O
128
128
128
30 Outputs + 96
60 Outputs + 64
32 Diff. I/O + 64
64 Diff. I/O

Logic Family

FTTL
ACTTTL/CMOS
TTL Open Collector
Solid State Relay + FTTL or CMOS I/O
Differential TTL
FTTL
ACTTTL/CMOS
TTL Open Collector
Solid State Relay + FTTL or CMOS I/O
Solid State Relay + FTTL or CMOS I/O
Differential TTL + TTL or CMOS
Differential TTL

Table 1-1. List of Equipment Configurations.

Change 5

1-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 1: General Information

The IO50 and IO100 series of Digital Input/Output modules were devel-
oped for use in process control, microprocessor cycle emulation, bus cycle
emulation, process simulation, and functional board or circuit test applica-
tions. All modules are single slot, C-size VXI modules, with the IO100
series providing up to 128 channels of digital I/O and the IO50 series
providing up to 64 channels of digital I/O. Each group of 8 channels may
be software configured as either input or output. Tristate control of
outputs allow for emulation of bi-directional data and control busses.
Four 50-pin IDC connectors are provided on the IO100 series front panel,
two on the IO50 series. Each I/O connector provides 32 I/O channels, 4 I/
O handshake strobes, and 4 tristate control/output enable inputs.

Programming Formats. All modules use a high level, SCPI-compatible
command set for setup and control of I/O channels. They also support
VME dual-ported RAM and registers. I/O pins may be programmed by
sending high-level commands or with direct, high speed VME read/writes,
the same as might be used for register-based instruments. Using this
combination of programming formats results in the best of both worlds,
high functionality and high speed.

Autonomous Operation. Memory emulation and block input or output
modes allow autonomous operation from the local microprocessor. Data
fields may be programmed from 1-bit to 32-bits wide. Multiple data fields
may be defined, allowing I/O pins to be grouped together based on func-
tion. Double latching the outputs allows all output channels to transition
at the same time, regardless of field size or the number of fields defined.
Latching the inputs allows a full 128 bit wide read with a single command
(64 channels for the IO50). Utilizing the VXI TTLTRG lines, modules
may be linked together for even wider I/O channel groups.

The IO53 and IO130 modules provide users with 30 optically isolated
solid-state relay outputs for applications requiring high voltage outputs.
The IO53 provides 30 high voltage output channels and 32 TTL or CMOS
I/O channels and the IO130 provides 30 high voltage output channels and
96 TTL or CMOS I/O channels. The relays allow the module to control
high voltage applications up to 100 volts, AC or DC. Switched voltages
can be either user supplied via the front panel, or selected from +5, ± 12
and ± 24 volts available from the VXI backplane. The TTL I/O channels
are the same as the IO100 TTL channels described previously.

An option for the IO130, the IO130-002, substitutes an additional 30 high
voltage output channels for the 32 TTL channels on port/connector “D”,
providing a total of 60 high voltage outputs and 64 TTL or CMOS I/O
channels. Both the IO53 and IO130 modules support external I/O hand-
shaking for their TTL or CMOS I/O ports. The handshake I/O pins are
used for supplying the external switched voltages on the high voltage
ports.

Equipment Description

Change 5

IO50 / IO100 User's Manual 1-3

Rev. 02Interface Technology

Chapter 1: General Information

The IO54 and IO140 modules provide users with differential TTL I/O for
applications requiring greater noise immunity and longer cable runs. The
IO54 provides 32 Differential TTL I/O channels, each with switchable
100 ohm termination. The IO140 also provides 32 differential I/O chan-
nels with switchable 100 ohm terminations, plus an additional 64 TTL or
CMOS I/O channels. IO140 TTL channels are the same as the IO100 TTL
channels described previously. An option for the IO140, IO140-002,
substitutes an additional 32 differential TTL channels on port “B” for the
64 TTL or CMOS channels on ports “B” and “D”.

The differential I/O channels meet RS-422-A standard. To accommodate
the greater number of signals (a positive/negative signal pair per channel),
port B has been eliminated and port A signals mapped to connector A and
connector B. An error will be generated if an attempt is made to define a
test using port B. For option IO140–002, only ports A and C are valid.
Both the IO54 and IO140 modules support external I/O handshaking for
their valid ports.

Change 5

1-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 1: General Information

Indicators and Connectors

See Fig. 1-1. All the connectors and LEDs for
the I/O Module are located on the module front
panel.

LEDs

There are three LEDs located at the top of the I/O
Module front panel.

o POWER (Green) - On any time power is
applied to the module.

o SYSFAIL (Red) - Off during normal opera-
tion. During the power-up sequence,
SYSFAIL is lit until completion of internal
self test. If SYSFAIL remains lit, a fault
exists within the module.

o ACCESS (Yellow) - Lit briefly anytime the
module is accessed by the VXI bus.

CONNECTORS

Four 50-pin connectors are provided on the
IO100 series, two 50-pin connectors on the IO50
series. Connector location and pin numbering
are described in Chapter 6 Installation. Each
connector has 32 data pins organized as four
bytes of 8-bits each. Each byte has internal and
external tristate output control.

Other signals on each connector include one pair
of request and acknowledge handshake strobe
lines for input, another pair for output, one
external tristate control for each byte, eight
paired ground lines, and two fused 5 volt supply
pins.

Figure 1-1.
Indicators and Connectors.

�������
�		
��

����

��
�

��

�������
�		
��

����

��
�

��
�������
�		
��

��
�

������
����	
���

���������

�
�

�
�

�
�

�
�

�� �� �� ��

�� ��

�
�

�
�

Change 5

IO50 / IO100 User's Manual 1-5

Rev. 02Interface Technology

Chapter 1: General Information

VXI Specifications

Interface Compatibility:
Type Message-based, servant only
VXI Revision 1.3 and 1.4
Size C-size, single slot
Configuration Static or Dynamic
Interrupt Level Programmable 1-7
TTLTRG 0-7 Input or output, selectable in groups of

two
Memory A24 RAM, 256K

Power Requirements:

All modules +5 volts, 3.2 A, 16 W typ.
(except IO53/130)

IO53 / IO130 +5 volts, 3.7 A, 18 W typ.,
±12, ±24 volts user selectable

Cooling Requirements:

Per-slot Average 16 W typical
Airflow 1L / sec @ 0.30 mm water pressure for

10º C temperature rise

Environmental Specifications:

Temperature Storage = -40º C to +75º C
Operating = 0º C to 45º C

Humidity 5% to 95% relative, noncondensing

Software Drivers:

National Instruments LabWindows/CVI

SPECIFICATIONS*

Logic Families:

FTTL Vol* 0.55 V Voh** 2.4 V
IO100/IO50 Vil 0.8 V Vih 2.0 V

Iol 64 mA Ioh -3 mA
Skew**** 15 ns, max.
Rise/Fall 3 ns/3 ns

CMOS Vol* 0.5 V Voh** 3.7 V
IO110/IO51 Iol 24 mA Ioh -24 mA

Skew**** 20 ns, max.
Rise/Fall 4 ns/4 ns

Open Collector Vol* 0.42 V Voh** 5.0 V
IO120/IO52 Vil 0.8 V Vih 2.0 V

Iol 64 mA Ioh*** 0.5 mA
Skew**** 20 ns, max.
Rise/Fall 3 ns

Switched
IO130/IO53

Max Voltage 100 V peak AC/DC
Turn on/off Time 4 ms
On Resistance 20 ohm max.
Isolation Optical, 3750 V
Carry Current 120 mA

Differential TTL Vol* 0.50 V Voh** 2.5 V
IO140/IO54 Vil 0.8 V Vih 2.0 V

Iol 20 mA Ioh -20 mA (max)
Skew**** 21 ns, max.
Rise/Fall 14 ns/14 ns (typical)

Handshake and Control:
(except Switched High Voltage Outputs)

Byte Available/Request Per I/O connector
Data Valid/Acknowledge Per I/O connector
Tristate Control Inputs 1 per byte (except IO120/IO52)
Output Enable Inputs 1 per byte (IO120/IO52 only)

* Maximum voltage at minimum load.
** Minimum voltage at maximum load.
*** Depends on pull-up resistor value.
**** Channel-to-channel skew. Add 50 ns for channel-to-channel

skew across multiple cards.

*Specifications subject to change without notice.

Change 5

Model

IO50
IO51
IO52
IO53
IO54

IO100
IO110
IO120
IO130

IO130-002
IO140

IO140-002

I/O Channels

64
64
64

30 Outputs + 32
32 Diff. I/O

128
128
128

30 Outputs + 96
60 Outputs + 64
32 Diff. I/O + 64

64 Diff. I/O

Logic Family

FTTL
ACTTTL/CMOS

TTL Open Collector
Solid State Relay + FTTL or CMOS I/O

Differential TTL
FTTL

ACTTTL/CMOS
TTL Open Collector

Solid State Relay + FTTL or CMOS I/O
Solid State Relay + FTTL or CMOS I/O

Differential TTL + TTL or CMOS
Differential TTL

1-6 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 1: General Information

(THIS PAGE LEFT BLANK INTENTIONALLY)

Change 5

IO50 / IO100 User's Manual 2-1

Rev. 02Interface Technology

Chapter 2: Functional Description

�� �� �� �� �� �� �� �

Functional Description

General Both the IO50 and the IO100 (IO50/IO100) are general purpose, parallel,
digital interfaces that provide stimulus or receive response from a variety
of devices. Each data transfer (stimulus or response) is controlled by the
user provided Slot-0 Controller using either message-based commands or
direct shared-register access. Several modes of operation allow I/O
transfers to be controlled by the local IO50/IO100 processor, or by hand-
shake control signals from the UUT (Unit Under Test). The type of output
driver and resistive termination can be modified by changing socketed
parts within the IO50/IO100 module (refer to Chapter 5, Installation).
Data signals are single ended, connected by means of ribbon cable or
discrete wiring. Control lines are paired with ground lines to improve
transmission reliability over cable runs of up to one meter in length.

Basic Input/Output Mode. In its simplest operating mode, the IO50/
IO100 serves as a parallel interface controlled from the user supplied Slot-
0 Controller. Typical applications for this mode of operation include
process monitoring and control involving slow operating devices such as
relays, switch closures, and valve control via I/O module racks. Very wide
digital test vectors and responses can be sent and received in this mode.

Defined Test Modes. A more sophisticated level of use is provided by
the Defined Test modes of operation. These modes are useful in applica-
tions where a more "intelligent" device is sending or receiving data and
requires strobe signals to control the transfer. Block data movement can
be used to couple asynchronous systems together in the manner of FIFO
buffers. Memory emulation functions are provided for aiding in test of
microprocessor based devices with limited test point access.

Register Access Mode. Users with unique requirements can control all
hardware aspects of the IO50/IO100 using shared access to the VXI
Device Dependent registers. This mode provides those users with soft-
ware development capability with the option of defining their own macro
operation commands on their chosen Slot-0 Controller.

Operating Modes

2-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

Basic Test Mode The Basic Test Mode requires minimal setup to produce output or read
input on the data pins. Data is transferred when the command is executed
without regard to UUT connections to the handshake or external tristate
control signals. This mode also offers the option of configuring multiple
I/O modules within a single VXI chassis for simultaneous input or output.

Any number of the available data pins from 1 to 128 (1 to 64 in the case of
the IO50 series) may be used for input or output. Data values transferred
will be read or written simultaneously regardless of data "width". Each
pin used must be defined as an input or output before data values are sent
or received. Pins are defined in byte groups with the following bound-
aries: 32-25, 24-17, 16-9, and 8-1. The shortened references used for
these groups in the command set are: 25, 17, 9, and 1. These values will
always define pin groups of exactly eight bits. Pin definition commands
may specify multiple bytes or may skip bytes (e.g., A25, A17, A1).

Pins defined as outputs will have their output drivers enabled and data
specified in the command will appear at the outputs. Even on pins defined
as outputs, the current output data may be read back for verification. This
is helpful in determining if a shorted or low impedance line is being
driven. Output data storage is initialized to zero by hardware reset or VXI
soft reset. All data pins are affected with each BASICmode:OUTput
command. Outputs which are not specifically set by a command will be
zero-filled. For a data field to remain constant throughout a sequence of
Basic outputs, it must be referenced in each command.

Each pin definition command for output will clear any previously defined
output pins, but not affect input pin definition. Input pin definition
commands will clear previously defined inputs without affecting outputs.
All input and output pins are returned to undefined by the CLEar com-
mand. The CATalog? query is provided to allow readback of all currently
assigned pins.

Note
Output drivers are enabled in byte-wide groups so that all pins in the
same octet will have their outputs enabled. Be sure that "don't care"
pins in an output group are not connected or are connected only to
input devices.

An error condition will be generated if an attempt is made to define pins
within the same octet as different types (input and output). The best
practice in configuring test fixtures is to estimate the required number of
inputs and outputs, allowing spares for future use, and round up to the
nearest byte boundary before making the UUT wire harness.

Data read back from the defined input pin list will be returned in the order
listed in the pin definition command. Users may take advantage of this

IO50 / IO100 User's Manual 2-3

Rev. 02Interface Technology

Chapter 2: Functional Description

list order control to perform byte swapping of data read from sources with
differing byte order conventions. If a data value sent is not wide enough
to fill the defined output pin field, bits will be zero filled from most
significant down. In this case, the pins specified last in the definition
command (right most) will output the available data and the pins specified
first (left most) will output zeros. Input commands will return a data value
equal in width to the number of defined input pins.

The general procedure for using the Basic Input/Output Mode of operation
and the programing sequence, are shown in Chapter 3, Command Set and
examples are shown in Chapter 4.

Up to four tests may be defined at any given time, and are designated by
the letters A, B, C and D. The letters A, B, C, and D correspond to the
independent sets of handshake control signals available on each of the
four connectors. A UUT test fixture may use different control signals on
each of the connectors, and switch between them by changing the active
test. The first test defined after power up, or when all tests have been
deleted, becomes the active test. The active test can then be changed by
using the SYSTem:TEST command with the desired test letter parameter.
Only the handshake signals of the current active test are enabled.

There are five Define Test types ...

1. Block In/Out Handshake
2. Block In/Out Timed
3. Programmed I/O Handshake
4. Programmed I/O Timed
5. Memory Emulation

Each defined test type provides some unique feature not provided by the
other test types. Normally, only one test will be active at any given time.
However, provisions have been made to allow Timed I/O Tests to be
initiated after a Handshake I/O Test is already running.

The handshake signals provided for data flow control with the UUT are
used in some manner by all the defined tests. The timed tests require no
requesting handshake from the UUT, but toggle the acknowledge hand-
shake with each data value transferred. This provides a strobe for UUTs
that might have input or output registers or latches (FIFOs, shift registers,
etc.). The handshake type tests will not transfer data until the UUT
initiates a request. This allows more intelligent devices to control the
flow of data at their own speed (data recorders, display devices, etc.).

Test operation is started with the INITiate command and can be stopped at
any time with the ABORT command. In the case where two tests are
running a one time (Memory Emulation and Programmed I/O), the

Defined Test Mode

2-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

INITiate and ABORT commands act only on the active test, as selected by
the SYSTem:TEST command.

Block Handshake type test provide the capability to move a block of data
between the IO50/IO100 Shared Memory area and the UUT, with data flow
controlled by the UUT. Block Handshake tests are initiated by the user
supplied Slot-0 Controller, then performed autonomously by the local 68000
MPU on the IO50/IO100. Once initiated, the Slot-0 need perform no other
operation until an end condition occurs (last item is transferred). All input or
output operations are controlled by the UUT's use of the handshake lines (see
Figs 2-1, 2-2, and 2-3). An interrupt can be sent to the Slot-0 Controller after
the last data value has been transferred. The STATUS commands are used to
enable this interrupt. Block Handshake tests provide a FIFO-like speed
decoupling between the IO50/IO100 and the UUT.

Shared Memory locations are allocated for each block memory test, with
separate areas for input and output. Each data vector allocates 16 bytes of
shared RAM, allowing access to any bit in the 128 pin array (64 bit pin array
in the case of IO50 series) operation, regardless of the actual number of data
bits changing, or their position. The rate of transfer is, therefore, indepen-
dent of the width of the data field being transferred. Shared Memory data
values can be accessed by the VECTOR:DATA command or by direct access
from the Slot-0 Controller. Once a Handshake Test is started, no other
handshake test may be initiated. However, it is possible to start a Timed
Test, even if a Handshake Test is already running.

This test provides single data value input and output with the UUT control-
ling data flow (see Figs 2-1, 2-2, and 2-3). Data locations for input and
output are separate, much like a full duplex communications peripheral. To
perform output, the Slot-0 Controller will first prepare an output data vector.
The VECTOR:DATA command can be used, or direct memory access to the
vector location in shared memory. The INITIATE:OUT command is then
sent to attempt data output. The IO50/IO100 will then wait for an output
request on the handshake input from the UUT before transferring data. The
TEST:NAME:STATUS? command can be used by the Slot-0 Controller to
determine if the data has been transferred. Alternately, the STATUS com-
mand can be used to enable an interrupt when the UUT has received the
pending data value and is ready for the next. If an attempt is made to send a
second data value before the first has been transferred, an error is generated.
At any time, the ABORT command may be sent to halt a pending transfer.

Input operation is similar, with the UUT sending a read request to the IO50/
IO100 when it has data available. If the INITIATE:IN command has been
executed, this request will cause data be read to the input vector location. If
the input interrupt is enabled, a Slot-0 interrupt is sent after the data has been
read. The TEST:NAME:STATUS? command can be used to determine if

Block Handshake Tests

Programmed
I/O Handshake Tests

IO50 / IO100 User's Manual 2-5

Rev. 02Interface Technology

Chapter 2: Functional Description

any data has been transferred. The Slot-0 Controller may access the input
data with the VECTOR:DATA command, or direct read of shared
memory.

An acknowledge signal is sent to the UUT at the completion of each data
transfer, forming an interlock handshake sequence. For output data, the
acknowledge is sent when valid data is available on the IO50/IO100
output pins. For input, the acknowledge handshake is sent when the UUT
data has been latched in from the IO50/IO100 input pins.

Shared Memory locations are allocated for Programmed Test with sepa-
rate areas for input and output. Each data vector allocates 16 bytes of
shared RAM, allowing access to any bit in the 128-pin (64-pin for IO50
Series) array. One entire data vector is transferred on each input or output
operation, regardless of the actual number of data bits changing, or their
position. Shared Memory data values can be accessed by the
VECTOR:DATA command or by direct access from the Slot-0 Controller.
Once a Handshake Test is started, no other Handshake Test may be
initiated. However, it is possible to start a Timed Test even if a Hand-
shake Test is already running.

This test operation provides the capability to move a block of data be-
tween the IO50/IO100 shared memory area and the UUT, with data flow at
a programmed rate. Block Timed Tests are initiated by the Slot-0 Control-
ler, then performed autonomously by the local 68000 MPU in the IO50/
IO100. Once initiated, the Slot-0 Controller need perform no other
operation until an end condition occurs (last item is transferred). All input
or output operations are controlled by instruction sequencing on the 68000
MPU (see Fig 2-4). An interrupt can be sent to the Slot-0 Controller after
the last data value has been transferred. The STATUS commands are used
to enable this interrupt. This test can provide output to UUT devices with
clocked or latched input data requirements, but no local intelligence to
control data flow. The IO50/IO100 will provide a clocking strobe with
each data value output. The TEST:NAME:TIMEOUT command can be
used to control the rate of data output and adjust the data setup or hold
time in relation to the strobe output.

Shared Memory locations are allocated for each Block Memory Test, with
separate areas for input and output. Each data vector allocates 16 bytes of
shared RAM, allowing access to any bit in the 128-pin (64-pins in the case
of IO50) array. One entire data vector is transferred on each input or
output operation, regardless of the actual number of data bits changing, or
their positions. The rate of transfer is, therefore, independent of the width
of the data field being transferred. Shared Memory data values can be
accessed by the VECTOR:DATA command or by direct access from the
Slot-0 Controller. Once a Timed Test is started, no other commands will
be executed until the test is complete. For this reason, it is not possible to

Block Timed Tests

2-6 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

��

������������
������������ ��

�� �������!!� �

��"��""����
#��!��$
%!&������	'��!'$
(&)�����*

�� ���+���
��,&���!��!&���

	'���-�'!
�&��

�� ������-�

��.$�

��$&�
+������!�-��!�

+������$&�
������������ ��

����!��$
����.�-���$�,�

��������������
���������������

�
������� �
��������

�������������������	�

���
����� !���"�!������
#���������
����� ���
�����

�
����� !���"�!������
#�$����
����� �
���� ��$����
����� �
�����

����������%��&
"�
'!��
��

����������%��&
"�
'!��
��

�

/

0

1

�

2

3

4

5

�"

��

�/

�0

�1

Figure 2-1.
Interlocked Output Handshake Sequence Normal Acknowledge Polarity.

1. UUT pulls Byte Request handshake line low (true).
2. Byte Request input generates interrupt to local 68000 or Resource Manager.
3. UUT turns on tristate outputs.
4. Interrupt service routine gets data from buffer or shared RAM (local 68000), or writes data to Output Registers

directly (Resource Manager).
5. Interrupt service routine pulses latch enable to output all bits in parallel.
6. Output data now available to UUT.
7. Internal Valid handshake data structure updated to reflect current output.
8. Data Valid output handshake signal set true (high).
9. Valid output clears local interrupt.

10. UUT can now remove Byte Request since Data Valid if true.
11. Interrupt occurs again to signal Data Valid can now be removed.
12. External tristate enables are turned off.
13. Valid structure is referenced to determine action for handshake outputs.
14. Data Valid handshake can now be removed since byte Request is high (false).
15. Interrupt is cleared by removal of Data Valid.

IO50 / IO100 User's Manual 2-7

Rev. 02Interface Technology

Chapter 2: Functional Description

��"��""�%!&�����
	'��!'$��!'6�77%
(&)�����*

	'���-�'!
�&��

������8�&$�.$�
������������ ��
($'9��!��*

�� �������!!� �
($'9��!��*

����!��$
+���

�� ������-�

��.$�

�-��'9$��,�
+������!�-��!�

����!��$
����.�-���$�,�

+������-:.&9���,�
������������ ��

��������������
��������������$$

����������%��&
"�
'!��
��

����������%��&
"�
'!��
��

�

/

0

1

�

2

3

4

5

�"

��

�/

�0

((���������	�

�

���
����� ���
�����

� ��$����
�����

 !���"�!����)"*�!+��#����
�����

��$����
����� ��$����
����� ��$����
�����

((��	�������������",

Figure 2-2.
Interlocked Input Handshake Sequence Normal Acknowledge Polarity.

1. UUT outputs data to be read by IO50/IO100.
2. UUT can then pull Byte Available handshake line low (true) since Data Acknowledge line is high (false).
3. Byte Available input generates interrupt to local 68000 or Resource Manager.
4. Interrupt service routine pulses input latch enable to capture input data on connector pins.
5. UUT data now available to local 68000 or Resource Manager via Data input registers.
6. Interrupt service routine stores data in designated buffer or shared RAM (if 68000), or reads directly (if Resource

Manager). Once data is saved, internal Acknowledge Data Structure is updated to show current output status.
7. The Data Acknowledge handshake output is then written high (true).
8. Writing Data Acknowledge clears internal interrupt.
9. UUT can now remove Byte Available handshake since Data Acknowledge is present.

10. Internal interrupt occurs again to signal Data Acknowledge can now be removed.
11. Internal Acknowledge Data Structure is referenced to determine action of handshake outputs.
12. Data Acknowledge handshake can be removed since Data Available handshake is high (false).
13. Interrupt removed when Data Acknowledge goes false.

Data acknowledge
Handshake Output

2-8 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

3

��"��""�%!&�����
	'��!'$��!'6�77%
(&)�����*

	'���-�'!
�&��

������8�&$�.$�
������������ ��

�� �������!!� �

�� ������-��	'��!'$
��,&���!�	$'-�

�� ������-��	'��!'$
��,&���!�+���

����!��$
+���

�-��'9$��,�
+������!�-��!�

+������-:.&9���,�
������������ ��

��������������
��������������$$

����������%��&
"�
'!��
��

�

/

0

1

�

2

4

5

�"

((���������	�

((��	�������������",

����!��$
����.�-���$�,�

-�
����-�
����

�

��
�
�
.�#��!�� %����!��

� � !���"�!�����)&
�����$����
������

 �����!��

Figure 2-3.
Interlocked Input Handshake Sequence Inverted Acknowledge Polarity.

1. UUT outputs data to be read by IO50/IO100.
2. UUT can then pull Byte Available handshake line low (true) since Data Acknowledge line is high (false).
3. Byte Available input generates interrupt to local 68000 or Resource Manager.
4. Interrupt service routine pulses input latch enable to capture input data on connector pins.
5. UUT data now available to local 68000 or Resource Manager via Data input registers.
6. Interrupt service routine stores data in designated buffer or shared RAM (if 68000), or reads directly (if Resource

Manager). Once data is saved, internal Acknowledge Data Structure is updated to show current output status.
7. The Data Acknowledge handshake output is then written low (true).
8. Writing Data Acknowledge clears internal interrupt.
9. UUT can now remove Byte Available handshake since Data Acknowledge is present.

10. Data Acknowledge handshake can be removed since Data Available handshake is high (false).

Data acknowledge
Handshake Output

IO50 / IO100 User's Manual 2-9

Rev. 02Interface Technology

Chapter 2: Functional Description

initiate any new test if a timed test is running.

This test provides single data value input and output, with a strobe signal
available to the UUT (see Fig 2-4). Data locations for input and output
are separate, much like a full duplex communication peripheral. To
perform output, the Slot-0 Controller will first prepare an output data
vector. Either the VECTOR:DATA command can be used, or direct
memory access to the vector location in shared memory. The
INITIATE:OUT command is then used to send data output and set the
strobe signal to the opposite state. The IO50/IO100 will then wait for a
programmed time interval before returning the strobe to its initial state.
The TEST:NAME:STATUS? command can be used by the Slot-0 Control-
ler to determine if the data has been transferred. Alternately, the STATUS
command can be used to enable an interrupt when the UUT has received
the pending data value and is ready for the next one. The
TEST:NAME:TIMEOUT command is used to set the strobe timing value.

Input operation is similar, with the INITIATE:IN command used to read
data from the UUT. When this command is sent, the IO50/IO100 input
strobe is set to the opposite state. After the programmed time-out value,
the IO50/IO100 latches data on its input pins and sets the strobe back to its
initial state. If the input interrupt is enabled, a Slot-0 interrupt is sent after
the data has been read. The TEST:NAME:STATUS? command can be
used to determine whether or not data has been transferred. The Slot-0
Controller can access the input data with the VECTOR:DATA command,
or can directly read the shared memory.

Shared memory locations are allocated for Programmed Test, with sepa-
rate areas for input and output. Each data vector allocates 16-bytes of
shared RAM, allowing access to any bit in the 128 pin array (64 bits in the
case of the IO50 series). One entire data vector is transferred on each
input or output operation, regardless of the actual number of data bits
changing, or their position. Shared Memory data values can be accessed
by the VECTOR:DATA command or by direct access from the Slot-0
Controller. Once a Timed Test is started, no other commands will be
executed until the test is complete. For this reason, it is not possible to
initiate any new test while a timed test is running.

The memory emulation function is a special case of the block input and
output functions. The input and output functions share a common
memory, allowing RAM or ROM emulation. Data transfer must always
be initiated by a UUT handshake request, and separate read and write
requests are required. The UUT must also have the capability to wait
several hundred microseconds for a memory acknowledge signal before
continuing. Refer to "Application Examples" (Chapter 5) for connections
for some typical applications.

Programmed Timed Tests

Memory Emulation Test

2-10 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

Figure 2-4.
Timed I/O Handshake Operation

� ��

����������������������

� ��

� ���

����������������������

� ���

� ���

�������������� ����

� ��

� ���

� ���

� ���

� ��

�� 	!���������������	"�#

�� 	!�����������$���	"�#

�� 	!���������$���	"�#

�� 	!��������������	"�#

�

�������������� ����

����	
���
���

�����%�"�!����
&���"	!'	
(��!��&	�$�� �"

�����%�"�!����
&���"	!'	
(��!��&	���)	��	!

����	
���
���

�����%�"�!����
&���"	!'	
(��!��&	�$�� �"

�����%�"�!����
&���"	!'	
(��!��&	���)	��	!

����	
���
���

�����%�"�!����
&���"	!'	
(��!��&	�$�� �"

�����%�"�!����
&���"	!'	
(��!��&	���)	��	!

����	
���
���

�����%�"�!����
&���"	!'	
(��!��&	�$�� �"

�����%�"�!����
&���"	!'	
(��!��&	���)	��	!

IO50 / IO100 User's Manual 2-11

Rev. 02Interface Technology

Chapter 2: Functional Description

Figure 2-5.
Memory Emulation Operation.

�!!�	���� ����

*	 ��#�+ �"��������,	�!�-����������	

*	 ��#�+ �"��������,	�!

*	 ��#�+ �"��������-���	

�

�!!�	�.�	"!
����	
�������

�����.�	"!
����	
�������

�#�	�,	/�	�
(��!��&	�����)	��	!

�����%�"�!����
&���"	!'	
(��!��&	���)	��	!

�!!�	�.�	"!
����	
�������

�����.�	"!
����	
�������

�#�	��)��"�0"	
(��!��&	�����)	��	!

�#�	��
&���"	!'	
(��!��&	�����)	��	!

�����1����������	���"
�������

� �

� ��	

�
�

������������������

� ���

�!!�	���� ����

�

������������������

� �

� ��	

�
�

� ��

�!!�	���� ����

�����.�� ����

�!!�	���!������2��
�	!����	���""#

� �

� ��	

�
�

� ���

� �

�!!�	�.�	"!
����	
�������

�����.�	"!
����	
�������

�#�	�,	/�	�
(��!��&	�����)	��	!

�����%�"�!����
&���"	!'	
(��!��&	���)	��	!

� ���
+3�	���"�������	
+��0"	���$�� �"

2-12 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

Memory emulation uses a UUT input field, designated by the user, as an
address index into the shared memory storage area. Data will then be
transferred across a designated data pin field, emulating random access
memory operation. When data transfer is complete, the acknowledge
handshake will be sent by the IO50/IO100. While the access and cycle
time of this emulated memory is many times slower than that of a real
device, it can be used to provide short initialization or troubleshooting
loops in testing microprocessor based UUTs. The ability to use a Timed
Test while the memory emulation function runs in the background allows
changing reset or other inputs to the UUT while executing these test loops.
No direct program halt control is available, but the user can store "jump to
self" opcodes at the end of test loops. Memory emulation operation will
continue until the Slot-0 Controller sends the ABORT command.

This method of operating the IO50/IO100 provides flexibility for users
with embedded software development capability. The VXI Device
Dependent Registers can be accessed directly by the Slot-0 Controller in
the IO50/IO100 shared memory space. These are the same registers used
by the local 68000 MPU to perform high level command operations. This
means that any operation that can be performed with the command set can
be performed via direct register access. Users with special requirements
for higher speed data transfer on a few channels might develop special
algorithms on their Slot-0 Controller to access these shared registers.

Note
Since these registers are shared, users may experience undefined
operation if they attempt to use direct register control while execut-
ing high level commands or any of the defined test operations. All
tests should be aborted before beginning any direct register program-
ming operations.

Users developing code to access the shared registers should be aware that
different compilers and Slot-0 hosts have differing address conventions for
byte storage. The IO50/IO100 hardware register mapping corresponds to
the Motorola scheme of storing the most significant part of long words at
the lower of the two word address required. If byte access is used, the
lowest addressed byte (even address) corresponds to bits 15-8 of the
memory word location. Byte and word swapping may be required with
Slot-0 hosts using other conventions. Refer to Chapter 4 for additional
information on register level programming.

Register Access Mode

IO50 / IO100 User's Manual 2-13

Rev. 02Interface Technology

Chapter 2: Functional Description

The data organization for BASIC mode operation is discussed under the
description of that mode of operation. For the Defined Test operating
modes, which allow field definitions, data is stored in structures called
vectors. The block transfer type tests will use as many of these vectors as
the user specifies (up to the limit of available memory). The Programmed
I/O Test uses the same vector structure, but is limited to two vectors, one
for input and one for output. Input and output data are stored separately in
all cases except Memory Emulation. A memory pool of 15,360 vectors is
available in the shared RAM. As tests are defined, vector storage space is
allocated from this pool. If the user requests more vectors in the combined
defined tests than are available, an error will be generated. If a defined
test is deleted, all vectors from the remaining tests are relocated downward
in RAM automatically to keep the free RAM pool in high memory
unfragmented.

Note
To avoid undefined results during this memory packing operating, no
tests can be executed when tests are deleted. Attempting to delete
tests before the active test has completed, or aborted, will generate
an error.

Each data vector is 16 bytes (128 bits) long. This allows bit fields to be
defined across any of the output pins. Data is stored in a non-inverting
format and can be specified with a hex or binary radix as determined by
the VECtor:DATA command. Use the VECtor:COUNt command to
reserve a number of locations for these vectors in shared memory. Output
vectors will then be filled from low to high memory as they are received in
the VECtor:DATA command. Input vectors are filled from low to high
memory as block tests execute and the IO50/IO100 reads in data from the
UUT. Users may read or write vectors by direct access to shared memory.
The data format orders bytes with the Motorola longword address conven-
tion.

Several commands are provided to facilitate shared memory utilization,
and shared memory access to data vectors during handshake type test
execution is allowed. Access to vectors during Timed Block type test
execution is not possible, since no new commands are executed until the
block transfer has finished. The TEST:NAME:STATus? command can be
used to determine the last vector number output or input during test
execution. The TEST:NAME:CATalog? command will return the offset,
as a byte count, from the start of shared RAM to the address of the first
vector location for the named test. This address can be combined with the
base address assigned by the VXI Resource Manager to the IO50/IO100
shared memory, to address vector structures. When accessing shared
RAM vector structures directly, be sure to observe the correct byte ad-

Vectors

Data Organization and Memory Allocation

2-14 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

dressing format, as shown in Chapter 4 (Register Based VXI Operation).
Also be aware that the bytes of the vector may appear in a different order
than when sent as command data. This may be a result of shifting per-
formed to meet the ordering required by the pin list in the definition
command. The TEST:NAME:STATus? command also returns the total
byte count of vector storage allotted for the named test.

The SYSTem:LEARn? command provides a way to save shared memory
as well as configuration information for the instrument. When this
command is sent, all internal configuration information is placed in shared
RAM and a byte count value is returned. This byte count will include all
configuration data and allocated shared memory space for defined tests.
The user can read this number of bytes, incrementing from the shared
memory base address, into a file to save the current instrument environ-
ment. This same file can be written to shared memory after instrument
power-up to reinstall the test vector values. Sending the LEARn com-
mand will then cause the configuration data to be read into the appropriate
internal registers from shared RAM, completing instrument setup.

The Defined Test Mode allows more sophisticated data manipulation, but
requires more user setup than the basic mode. These tests allow bit field
definitions for giving relevant names to pin groups. These fields also
allow physically separated pins to be combined into logical groups so that
the use may read and write them in a convenient data format. Fields may
be from 1 to 32 bits wide and need not be defined on byte boundaries. If
fields are not defined on byte boundaries, then input data bits will be zero-
filled in the last data byte read (to the nearest hex value). Data is appor-
tioned to the output pins in the order they were listed in the field definition
pin list (from left to right). If hex output data is supplied for a field not on
a byte boundary, the data will contain more bits than the pins of the output
field. In this situation, the last data value sent will be truncated to the
number of least significant bits required to fill out the field. Fields are
"attached" to the test that is currently active when they are defined, and
are cleared if that test is deleted. Field names are local to the test, and the
same name may be used in multiple tests.

Fields have a tristate control parameter which provides the user the ability
to select among input and output pin functions. After defining the field,
the user determines whether it is to be used for input only, output only, or
controlled by signals from the UUT. After power up or a field clear
command, the data pins are considered undefined, and are in a high
impedance state. The hardware for input and output of data pins is
controlled in byte groups, so field output definitions must be consistent
across byte boundaries.

Fields

IO50 / IO100 User's Manual 2-15

Rev. 02Interface Technology

Chapter 2: Functional Description

Note
Error messages are generated if an attempt is made to declare pins
in the same octet as different types (input and output) in two different
fields. The external control of outputs may be useful in situations
where the UUT is controlling data flow, and the data pins are con-
nected to a bidirectional or multi-source bus (ROM emulation,
backplane data bus emulation).

Front Panel Connectors
IO50 Series Only: Two connectors are provided, labeled A and B with
pins numbered from 1 to 50.

IO 100 Series Only: Four connectors are provided, labeled A, B, C, and
D with pins numbered from 1 to 50.

Connector pins are configured as two rows of 25, with 0.1 inch center
spacing. Pin location and numbering are shown in Fig 1-1. Individual pin
descriptions are provided in Figs 6-2 thru 6-8. Each connector has 32 data
pins, organized as four bytes. Each byte has internal and external tristate
output control. Therefore, pins are configured for input or output in the
following octets:

32-25 24-17 16-9 8-1

Other signals on each connector include one pair of request and acknowl-
edge handshake strobe lines for input, another pair for output, one external
tristate control for each byte, eight paired ground lines, and two fused 5
volt supply pins.

Note
Handshake signals are provided with paired grounds on the cable
connector to help control signal crosstalk and noise pickup common
in single ended interfaces. These signals are able to maintain cor-
rect logic levels regardless of the switching transients caused by
changes on the data pins. The data signals themselves experience
transient spikes across logic thresholds due to adjacent channel
switching. These "spikes" may be from 10 to 20 nanoseconds in
duration (in cables of 1 meter or less). Data signals should, there-
fore, not be used as clocks or strobes for high speed logic devices
and should be qualified with handshake signals if used for address
decoding functions. Word generators with transmission line cabling
are more suitable to providing transient-free data at high frequen-
cies. The application information section (Chapter 5) shows typical
UUT connections and some acceptable uses of data pins for clocks,
when unavoidable.

2-16 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

Data Pins
Each of the 50 pin connectors has 32 data pins. Each data pin is capable
of receiving input from the UUT or providing output to the UUT. Sepa-
rate drivers and receivers are used, so output data can be read back at any
time. This may be useful to determine if an output is driving a shorted
line. Output data is double buffered, so that data fields wider than 16 bits
(up to 128 bits) will be output simultaneously. All data pins have the
resistor configurations shown in Appendix B. Several optional configura-
tions are possible by changing socketed parts, as also shown in Appendix
B. While provisions have been made for several termination schemes,
signal levels will be affected by crosstalk and noise as described above.
Keeping cable length to a minimum and (for extreme cases) using discrete
wiring will minimize these affects.

Data pins are numbered on each connector as shown in Chapter 1, Over-
view. The front panel markings indicate the pinout of each connector.
The command set refers to data pins with a connector letter and pin
number (A1,B22,C32-1, etc.). Data is read and written without inversion.
All output data bit registers are initialized to zero on power up or a VXI
software reset.

External Tristate Control Pins
Each of the four data bytes on a connector has a unique external tristate
control input with a paired ground. These inputs can control the output
drivers in byte wide groups. The outputs are normally controlled inter-
nally, but external control may be useful when tying to a bus structure
(i.e.: memory emulation). These control inputs can be inverted under
software control, and read back by the Slot 0 controller. A hardware read
back function gives an indication of output driver state when a UUT is
externally controlling the outputs. This readback of the actual enable
signals to the tristate output drivers can be performed using Register
Access Mode (Chapter 4). The SYSTem :TRISTate? readback command
will return the current programmed state of the internal tristate control
settings. The state of output drivers is known if the internal settings are
INput or OUTput, but hardware readback must be used to determine the
driver status if internal settings are EXTNORMal or EXTINVerted.

Appendix B shows the receiver circuit for the external tristate control
inputs. They are internally pulled up to logic high (1) if left unconnected.
These external inputs are ignored after a power up condition, a hardware
reset, or a VXI soft reset, to avoid spurious enabling of output drivers.
They will not become effective until a field is defined with external
control enabled.

IO50 / IO100 User's Manual 2-17

Rev. 02Interface Technology

Chapter 2: Functional Description

Request Handshake Control Pins
Each connector has two request handshake signals. The names of these
signals are assigned from the IO50/IO100 “point of view”. The Byte
Request input comes from the UUT and requests the IO50/IO100 to output
data (bytes). The Byte Available input from the UUT informs the IO50/
IO100 that it should read in data (bytes). These inputs can be inverted
under software control. The inputs are non-latching, and are meant to be
used as interlocked handshakes. These handshake lines can be readback
by the Slot 0 Controller in the shared registers. Each of these handshake
lines can generate an interrupt under control of a separate hardware mask
register. The readback function displays which connector signal is
currently active. A high (1) bit in the readback register indicates an active
request, a low (0) indicates an inactive connector signal. The request
inputs must be received low (0) to cause an active signal status. The
software inversion capability must therefore be used when UUTs request
data transfers with rising edge signals.

The local 68000 MPU normally uses the interrupt capability to perform
handshake operations. Program options allow interrupts to be redirected
to the Slot 0 Controller for high level control. An interrupt will occur
once per data transfer if the acknowledge handshake (see below) polarity
is inverted. This one interrupt will occur when the request handshake is
active and the acknowledge handshake has not yet been set. Setting the
acknowledge in this situation will disable interrupts until the UUT re-
moves the request. At that time, hardware gating will also remove the
acknowledge handshake. Two interrupts occur per data transfer if the
acknowledge handshake polarity is normal. The first interrupt occurs
when the UUT request is active, and no acknowledge has been set. This
interrupt will be cleared when the acknowledge handshake is set true
(high), and a second interrupt then occurs when the UUT removes it’s
request. The second interrupt is cleared when the acknowledge output is
written false (low). This sequence provides a fully interlocked handshake
with the UUT regardless of polarity. A fail safe timer is incorporated in
the IO50/IO100 hardware to insure that commands (i.e.: ABORt or
INITiate) can be executed even when servicing excessive UUT interrupts.

The request handshake lines each have a paired ground connection within
the connector/cable interface. This ground is returned to system logic
ground in non-isolated versions, and to the isolated return path in isolated
versions. These paired grounds should be connected to the corresponding
UUT signal. These grounds, and the physical separation from the data
lines, allow the handshake signals to maintain correct logic levels despite
switching of multiple data signals. Appendix B shows the receiver circuit
for the request handshake inputs. They are internally pulled up to logic
high (1) if left unconnected.

2-18 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

Acknowledge Handshake Control Pins
Each connector has a unique pair of acknowledge handshake signals that
are output during both “handshake” and “timed” typed tests. These
signals are named, as are the requesting handshakes, from the IO50/IO100
perspective on data transfer. The Data Valid signal is output by the IO50/
IO100 to inform the UUT that data output (in response to the Byte Re-
quest signal) is now available on the data pins. The UUT would typically
use Data Valid to cancel the Byte Request and strobe data into its input
latching hardware. The Data Acknowledge is output from the IO50/IO100
to the UUT to indicate data sent with a Byte Available request has been
strobed into the IO50/IO100 receiver latches. The UUT would normally
use Data Acknowledge to cancel the Byte Available request and start
generating the next output data value. These acknowledge handshake
signals are output during “timed” type tests, even though no requesting
handshake is required. This allows UUTs to strobe data in or out in under
control of the IO50/IO100. A delay parameter is provided in these tests to
stretch the width of the strobe pulse. This delay, in conjunction with the
programmable polarity, can be used to adjust setup and hold times to meet
UUT requirements.

The acknowledge outputs can be programmed for low or high true polar-
ity. The high true output is initialized low (0) on power up or reset, and
will go high to indicate data transfer can complete. The handshake signal
output driver in this case is always enabled. When programmed for low
true polarity, the acknowledge handshake output acts in an open collector
fashion. In this mode, the output driver is initialized to a high impedance
state. When a transfer can complete, the output driver is enabled to drive
a low (0) output value. In either polarity mode, the acknowledge hand-
shake is removed when the request is removed, as required by interlocked
operation. In the inverted mode however, the acknowledge is removed
much sooner, delayed only by gate propagation time. This allows memory
emulation operation with devices capable of starting successive memory
operations within a very short time. Figure 2-1, 2-2 and 2-3 show the
details of interlocked handshake operations.

Appendix B shows the driver configuration for the acknowledge hand-
shake outputs. The on-board pullup resistor is socketed to allow user
modification. The weak pullup (10K) standard part can usually be left in
parallel with existing pullup resistors on the UUT without overloading
driver outputs. Rise time for operation in the inverted output mode may
be excessive unless a smaller resistor is in parallel on the UUT.

The acknowledge handshake lines each have a paired ground connection
within the connector/cable interface. This ground is returned to system
logic ground in non-isolated versions, and to the isolated return path in
isolated versions. These paired grounds should be connected to the

IO50 / IO100 User's Manual 2-19

Rev. 02Interface Technology

Chapter 2: Functional Description

corresponding UUT signal. These grounds, and the physical separation
from the data lines, allow the handshake signals to maintain correct logic
levels despite switching of multiple data signals.

Power Pins
Each connector has two power pins available to provide limited logic
power for external devices. These pins are connected directly to the VXI
cardrack +5V supply, and in conjunction with the many paired ground
signals mentioned above, allow operation of industry standard I/O module
racks with a single cable connection. The power pins are protected with
self resetting fuses (Raychem Polyswitch, RBE110A). Each connector
pair (A-B, C-D) is protected by a 1 amp fuse, providing a total of 2 amps
of +5V power. If an overload condition occurs, the fuses will trip within
0.05 to 10 seconds, depending on the current load, and will reset within 20
seconds after the condition is corrected.

VME Interrupt Request Connections
The IO50/IO100 has interrupt capability and can be programmed to drive
any one of the seven backplane interrupt request lines. The assignment
and programming of interrupt lines is normally handled by the Resource
Manager configuration routine using VXI Word Serial commands. Refer
to the Slot 0 controller documentation for details of interrupt assignments.
Chapter 3, Command Set, contains detailed information about interrupt
enable and status readback functions. Refer to the STATUS commands.

TTL Trigger Connections
The IO50/IO100 can be programmed to source or receive signals on any
of the eight VXI TTLTRG backplane signals. These trigger lines are used
to provide synchronized input and output of data across multiple boards in
the same cardrack, or to an external trigger source. These trigger lines are
connected for input or output in pairs, one each for input and output. The
BASIC MODE command will configure signals for use between IO50/
IO100 boards acting in a master/slave arrangement. Any signal which can
source the TTLTRG lines can determine input or output timing in this
manner. Chapter 4 on Shared Register programming provides information
on selecting the TTLTRG lines for specific applications.

VXI/VME Connections

2-20 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 2: Functional Description

(THIS PAGE INTENTIONALLY LEFT BLANK)

IO50 / IO100 User's Manual 3-1

Rev. 02Interface Technology

Chapter 3: Command Set

����������������

Command Set

The IO50/IO100 is a message-based Digital I/O instrument with a com-
mand structure patterned after the Standard Commands for Programmable
Instrument (SCPI) syntax. SCPI commands are defined in a tree structure
starting with a basic command function, called the command root, and
expanding functions by adding additional command descriptors, called
command branches, until the final control parameter, called a command
leaf, is defined. In this way, commands may be logically grouped together
based on function. In some instances a command branch may also be a
leaf. Instances of this type will be pointed out.

The IO50/IO100 is an advanced, full feature Digital I/O module. Due to
this, the standard SCPI command list is inadequate. Most of the com-
mands for the IO50/IO100 are not defined within the SCPI document
itself, or are a modification of a defined SCPI command.

A command quick reference list of the IO50/IO100 command set, and a
command list key, are provided in the next few pages. Following the
command key are the descriptions of the IO50/IO100 commands and their
associated parameters.

Commands are grouped together based on functionality, and listed by
alphabetical order or the command root. To assist in keeping track of the
root command and its branches while negotiating through the various
command levels, the complete command syntax up to the current level is
provided in the header space of each page. Use the command quick
reference found on the following pages to help identify commands by
root, branch and leaf.

The command key in Table 3-1 on the following page provides a summary
of the different components that make up a full command sequence. Note
that command roots do not have a prefix, while branches and leaves are
preceded by a colon. Except where noted, multiple commands may be
sent on a single line. Also, certain commands are default commands and
are optional. These commands are shown within brackets [].

SCPI Command Syntax

3-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

ROOT Signifies a command root. Branches and/or leaves may follow, or the
root may be a solitary command, in which case a program example is
provided. Root commands that are not solitary will not have examples.

:BRANCH Signifies a command branch, preceded by a command root and followed
by another command branch or a command leaf. Command branches
may have modifying parameters. Examples are not provided for com-
mand branches.

:LEAF Signifies the termination of a command sequence. Examples are always
provided for command leaves.

command? Any command followed by a question mark indicates a command query.

<required> Required parameter.

[option] Optional parameter.

{repeat} repeat as many times as are needed.

(min - max) Value entered must be within the range of min to max, inclusive.

aaa | bbb Acceptable choices are aaa OR bbb (OR ccc OR ddd...).

response Response from IO50/IO100.

Table 3-1. SCPI Command Key

IO50 / IO100 User's Manual 3-3

Rev. 02Interface Technology

Chapter 3: Command Set

COMMAND QUICK REFERENCE

ABORT
FIELD ------------- :DEFINE ------------------ :PINASSIGNMENT
---------------------- :NAME--------------------- :TRISTATE(?)
-- :DELETE
-- :CATALOG?
INITIATE -------- :INPUT
---------------------- :OUTPUT
---------------------- :BLOCK
TEST -------------- :DEFINE ------------------ :MEMEMULATION ------- [:SIZE]
-- :BLKOUTHANDSHAKE -- [:SIZE]
-- :BLKINHANDSHAKE ----- [:SIZE]
-- :BLKOUTTIMED ----------- [:SIZE]
-- :BLKINTIMED -------------- [:SIZE]
-- :PRGIOHANDSHAKE
-- :PRGIOTIMED
---------------------- :NAME--------------------- :STATUS?
-- :DELETE
-- :CATALOG?
---------------------- [:HANDSHAKE] --------- :REQUEST ------------------- [:INPUT](?)
-- :OUTPUT(?)
-- [:ACKNOWLEDGE] ------- :INPUT(?)
-- :OUTPUT(?)
---------------------- :TIMEOUT --------------- [:INPUT](?)
-- :OUTPUT(?)
---------------------- :ADDR(?)
---------------------- :FREE?
VECTOR --------- :COUNT
---------------------- :DATA --------------------- [:VALUE](?)
-- :RADIX
-- :FIELD
SYSTEM ---------- :ERROR?
---------------------- :VERSION?
---------------------- :FIELD(?)
---------------------- [:TEST](?)
---------------------- :LEARN(?)
---------------------- :TRISTATE?

Quick Reference Key

? Query Only

(?) Command or Query

[] Optional Command

Standard Commands for Programmable Instruments

3-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

COMMAND QUICK REFERENCE (CONTINUED)

STATUS ---------- [:OPERATION] ---------- [:EVENT]?
-- :CONDITION?
-- :ENABLE(?)
-- :TEST -------------------------- [:EVENT]?
-- :CONDITION?
-- :ENABLE(?)
-- :ISUMMARY1 ---- [:EVENT]?
--- :CONDITION?
--- :ENABLE(?)
-- :ISUMMARY2 ---- [:EVENT]?
--- :CONDITION?
--- :ENABLE(?)
-- :ISUMMARY3 ---- [:EVENT]?
--- :CONDITION?
--- :ENABLE(?)
-- :ISUMMARY4 ---- [:EVENT]?
--- :CONDITION?
--- :ENABLE(?)
BASICMODE ---- :DEFINE ------------------ :INPUT
-- :OUTPUT
---------------------- :CATALOG?
---------------------- :CLEAR
---------------------- :INPUT?
---------------------- [:OUTPUT](?)
---------------------- :MODE(?) ----------------- :SLAVE ----------------------- [:GROUP]
-- :MASTER --------------------- [:GROUP]
-- :STANDALONE

IEEE 488.2 COMMON COMMANDS

*CLS *SAV

*ESE (?) *SRE(?)

*ESR? *STB?

*IDN? *TRG

*OPC (?) *TST?

*RCL *WAI

*RST

Standard Commands for Programmable Instruments

IO50 / IO100 User's Manual 3-5

Rev. 02Interface Technology

Chapter 3: Command Set

ABORT

Function: Halts currently executing handshake test.

Syntax: ABOR[T]

Remarks: This command will halt currently executing tests using handshake transfer
control . These tests are MEMEMULATION, BLKOUTHANDSHAKE,
BLKINHANDSHAKE and PRGIOHANDSHAKE . The ABORT com-
mand cannot stop the timed type tests since they, once started, run to
completion before any new commands take effect . The TEST:NAME
ALL:STATUS? command can be sent prior to ABORT to determine if any
test is currently executing . The TEST:NAME ALL:STATUS? can also be
sent after ABORT to determine last vector transferred before the test was
halted . The ABORT command will typically be used to recover from a
software timeout when a UUT fails to provide the expected handshake
signals to transfer data . A fail safe hardware timer is used in the IO50/
IO100 to insure that the abort command is executed within 200 ms, even if
the UUT is generating constant interrupts via the handshake request signals.

Example: ABORT

See Also: INITIATE:BLOCK, INITIATE:OUT, INITIATE:IN

3-6 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

FIELD

Function: Allows a name to be assigned to a logical group of connector pins and to
defines that group of pins as input or output.

Syntax: FIEL[D]

Remarks: Fields are associated with whatever test is currently active when the fields
are defined . There are four possible tests (A | B | C | D) . Pins assigned to
fields associated with test A will have their data flow controlled by the
handshake lines of connector A, and so forth for B, C, and D . Field names
are local to their test, and the same name can be used in other tests with a
different definition . Pins can be assigned to multiple fields, even if the
fields are associated with different tests . The only restriction is that fields
cannot define pins in the same byte with different input/output characteris-
tics.

The first field defined when a particular test is active becomes the active
field in that test . All subsequent field commands will act on that field . If
that field is deleted, a new active field must be defined, or FIELD com-
mands will generate a “no active field” error . The SYSTEM:FIELD
command is used to change or determine the active field . The
SYSTEM:TEST command is used to change or determine the active test .
The FIELD:NAME:CATALOG? command will display all currently de-
fined fields.

See Also: SYSTEM:FIELD[?], SYSTEM:TEST[?]

IO50 / IO100 User's Manual 3-7

Rev. 02Interface Technology

Chapter 3: Command Set

FIELD

:DEFINE

Function: Creates a user defined name for a logical grouping of data pins . Define is
also the branch to PINASSIGNMENT.

Syntax: DEF[INE] <name>

Range: Naming string can be 1 to 8 characters . Any alpha or numeric character, or
the underscore is permitted . Name may start with any of these characters.

Default: None

Remarks: A field is “attached” to whatever test is currently active when it is defined .
If no test is defined, an error is generated when attempting to define a field .
The first field defined after initialization becomes the active field . The
active field can be changed only with the SYSTEM:FIELD command . The
DEFINE command is followed by a PINASSIGNMENT command and a
pin list . Once defined, a field cannot be modified by further define com-
mands . The field must be deleted using the FIELD:NAME:DELETE
command, then redefined with the desired pins.

Example: FIELD:DEFINE COUNT_4:PINASSIGNMENT C2-1,A32-24,A16-1

See Also: FIELD:NAME, SYSTEM:FIELD

3-8 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

FIELD:DEFINE

:PINASSIGNMENT

Function: Assign physical connector data pins to a logical field name.

Syntax: PIN[ASSIGNMENT] <pin_list>

Range: Connector letters A | B | C | D, pin numbers 1 to 32.

Default: None

Remarks: Pin assignment not only attaches connector pins to a named data field, it
assigns the order in which data is assigned to those pins . The order in
which pins are specified in the pin list, from left to right, will be the order in
which data bits are assigned, from most significant to least significant . If a
pin list of C16-1 is specified, and an data vector of hexadecimal 1234 is
output by that field, data pins 16-9 will present 12 and pins 8-1 will present
34 . If the field pin list specifies C1-16, and the same data vector (1234) is
sent, pins 16-9 will present 2C and pins 8-1 will present 48 . See diagram
below.

Pin assignment can include ranges of pins, skip pins, and include pins from
more than one connector . The total number of pins that can be assigned to
one field is 32 . Commas separate individual pins and hyphens indicate an
inclusive range of pins.

Example: FIELD:DEFINE UART_ADD:PINASSIGNMENT C31,C20,A26-24,A8

�������������������
�� �

�������������������
�� �

��������������������������������������
��� �� �

�����		�
���� ������������

�����

�����

����

���� ����

����

IO50 / IO100 User's Manual 3-9

Rev. 02Interface Technology

Chapter 3: Command Set

FIELD

:NAME

Function: Used to select previously defined fields for inquiry, deletion, or modifica-
tion of pin input/output control.

Syntax: NAME

Range: Any field name already defined by a FIELD:DEFINE command or ALL.

Default: None

Remarks: This branch command performs no direct action, but allows a field to be
selected for action by subsequent branch commands . The name ALL can
be used to effect all defined fields . To determine the existing pin assign-
ments and field names, the FIELD:NAME ALL:CATALOG? command can
be used.

Example: FIELD:NAME COUNT_4:TRISTATE OUTPUT
FIELD:NAME ALL:DELETE

3-10 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

FIELD:NAME

:TRISTATE

Function: Sets control of pin drivers to forced off, forced on, or external control .
Allows current control setup to be cleared.

Syntax: TRIST[ATE] <control>

Range: IN[PUT] | OUT[PUT] | EXTNORM[AL] | EXTINV[ERTED] | CLE[AR]

Default: UNDEFINED

Remarks: All data pins in a defined field can be used for input or output . Separate
receivers and drivers are used, so input capability is always available . The
output drivers can be forced on or off internally, or placed under control of
the external tristate control signals . All pins will have their output drivers
forced off (undefined mode) after power up or reset . Since the pin driver
hardware uses byte wide devices, each pin in an octet must be assigned the
same tristate control value . Attempting to program the tristate control of a
field to input will cause an error if another field has already defined pins
within the same octet as output.

The octets within each connector are pins 1-8,9-16,17-24, and 25- 32 .
Each of these has its own external tristate control signal with an internal
pull up resistor . When outputs are programmed for EXTNORMAL, data
pins will be in high impedance state when the external tristate control
signals are high . Outputs will be enabled when these signals are brought
low . When outputs are programmed as EXTINVERTED, the polarities are
reversed . The TRISTATE? query command can be used to determine the
current software settings of the tristate controls.

Example: FIELD:NAME COUNT_6:TRISTATE OUTPUT
FIELD:NAME ALL:TRISTATE CLEAR

IO50 / IO100 User's Manual 3-11

Rev. 02Interface Technology

Chapter 3: Command Set

FIELD:NAME

:TRISTATE?

Function: Query the current software settings for pin control in specified field.

Syntax: TRIST[ATE]?

Response: field_name INPut | OUTput | EXTNORMal | EXTINVerted | UNDEFINED

Remarks: None

Example: FIELD:NAME COUNT_6:TRISTATE?
OUTput

FIELD:NAME

:DELETE

Function: Deletes named field.

Syntax: DEL[ETE]

Remarks: The field specified by name is deleted . All pins assigned to only that field
will become free, and their outputs will revert to undefined . Pins that are
shared by other fields will keep their current control values . If the field
deleted was the currently active field, a new active field must be specified
before any VECTOR:DATA:VALUE commands can be executed . The
SYSTEM:FIELD command can be used to determine and assign the active
field .

Example: FIELD:NAME COUNT_4:DELETE

See Also: SYSTEM:FIELD, VECTOR:DATA:VALUE

3-12 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

FIELD:NAME

:CATALOG?

Function: Read information about named fields.

Syntax: CAT[ALOG]?

Response: field_name, INput | OUTput | EXTNORMal | EXTINVerted | UNDE-
FINED, pin_list.

Remarks: Pins are listed in the order they were specified in the PINASSIGNMENT
command . If the NAME command preceding CATALOG? specified a
particular field name, only data pertinent to that field is returned . If the
NAME command specified ALL, data for all fields is returned, with semi-
colons separating field data strings . The data strings will be returned for
multiple fields in the order they were defined.

Example: FIELD:NAME COUNT_4:CAT:
COUNT_4,OUTput,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,
A15,A16,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B15,B15,B16

See Also: FIELD:DEFINE:PINASSIGNMENT

IO50 / IO100 User's Manual 3-13

Rev. 02Interface Technology

Chapter 3: Command Set

INITIATE

Function: Causes active test to begin data transfer operation.

Syntax: INIT[IATE]

Range: INPUT | OUTPUT | BLOCK

Default: Input

Remarks: This command will start the active test . It is required for each data transfer
in the Programmed I/O test, and once for each block of data transferred in
the Block Input and Output tests . The various setup and configuration
commands will not actually effect any connector pins until this command is
executed . Once a test has been started with the Initiate command, it will
proceed to completion or until the ABORT command is sent . The Abort
command will not be effective in Timed type tests, as they execute to
completion before any pending commands are processed . The active test
can be changed using the SYSTEM:TEST command.

In general, attempting to initiate a test while another test is already execut-
ing will generate an error . The exception to this is that Timed tests may be
INITIATED if a Memory Emulation or Handshake test is already executing
. This allows execution of diagnostic code loops while still providing
stimulus and response capability with the UUT . Handshake and Memory
Emulation tests are interrupt driven . While waiting for handshake inter-
rupts, the microprocessor is free to process commands, including initiating
a Timed test . However, Timed tests are microprocessor intensive and
always run to completion before any new commands are processed . So it is
not possible to initiate a Handshake or Memory Emulation test while a
Timed test is executing . Also, to avoid interrupt conflicts, only one Hand-
shake or Memory Emulation test may be executing at any time . The
operating status of executing tests can be verified using the TEST:NAME
ALL:STATUS? command . Data vector locations can be read and written
while tests are executing using the VECTOR:DATA commands, or direct
access to shared RAM . The Operation section has more information on the
data format of shared RAM.

Example: INITIATE:BLOCK

See Also: TEST, TEST:NAME:STATUS?, ABORT, INITIATE:BLOCK,
INITIATE:INPUT, INITIATE:OUTPUT

3-14 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

INITIATE

:INPUT

Function: Cause one data value input from the UUT during Programmed I/O tests.

Syntax: IN[PUT]

Remarks: The programmed I/O test uses a single input data vector location in shared
RAM . The INITIATE:INPUT command will cause the IO50/IO100 to read
all connector data pins, and store the result in that location . All 128 bits of
data read in will stored in the 16 byte vector location . When data is read
back using the VECTOR:DATA:VALUE? command, it will be formatted
according to the current active field attached to the active test . An error is
generated if no field has been defined . The SYSTEM:FIELD command
can be used to determine and change the active field . If the Programmed I/
O Handshake test is active, the data transfer will not take place until the
UUT indicates it has valid output data by activating the IO50/IO100 input
request signal . If the INPUT command is sent again before this occurs, an
error is generated . If the programmed I/O Timed test is executing, data is
input without waiting for a UUT request . Once the test has been defined,
and the vector space allocated, repeated reads are performed by sending
INITIATE:INPUT and VECTOR 1:DATA:VALUE? commands.

Example: INITIATE:INPUT

See Also: TEST, FIELD, VECTOR:DATA, HANDSHAKE

IO50 / IO100 User's Manual 3-15

Rev. 02Interface Technology

Chapter 3: Command Set

INITIATE

:OUTPUT

Function: Cause one data value output from the IO50/IO100 during Programmed I/O
tests.

Syntax: OUT[PUT]

Remarks: The programmed I/O test uses one output data vector location in shared
RAM . The INITIATE:OUTPUT command will cause the IO50/IO100 to
output that data vector to the UUT . Data stored in that vector, using the
VECTOR:DATA:VALUE command, will have been formatted according
to field definitions . The IO50/IO100 output registers for all 128 pins are
updated with the 16 byte output vector data, however only pins with output
capability will reflect this update . The TRISTATE command is used to
enable the pins for output . If the Programmed I/O Handshake test is active,
the data transfer will not take place until the UUT indicates it is ready to
receive data by activating the IO50/IO100 output request signal . If the
OUTPUT command is sent again before this occurs, an error is generated .
If the programmed I/O Timed test is executing, data is output without
waiting for a UUT request . Once the test has been defined, and the vector
space allocated, repeated writes are performed by sending VECTOR
1:DATA:VALUE xxxx, INITIATE:OUTPUT commands.

Example: INITIATE:OUTPUT

See Also: TEST, FIELD, VECTOR:DATA, HANDSHAKE

INITIATE

3-16 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

INITIATE
:BLOCK

Function: Cause a block of data values to be output by the IO50/IO100.

Syntax: BLOCK

Remarks: This command will cause the IO50/IO100 to transfer multiple data vectors
to the UUT . Output of data values will be performed from the lowest
vector number to the highest . Input of data values will fill shared memory
vector locations in the same order . At the completion of a block transfer,
the test status will change from EXECUTING to STOPPED, and no further
data is transferred until the next INITIATE command.

Output data will be formatted according to the fields attached to the active
test . Input is performed on all 128 connector pins and stored in the 16 byte
vector location . When read back using the VECTOR:DATA:VALUE?
command, it will be formatted according to field definition . An error is
generated if no field has been defined . If the Block Input or Output Hand-
shake tests are active, the data transfer will not take place until the UUT
indicates it is ready by activating the IO50/IO100 request signals . The
TEST:NAME:STATUS? command can be used to determine if the UUT is
requesting transfer . If the UUT is not performing as expected, the ABORT
command can be used to halt the test . Test execution time for block tests is
dependent on the number of vectors transferred, and the UUT request rate .

If the Block Input and Output Timed tests are executing, data is output
without waiting for a UUT request . Test time in this mode is dependent on
the delay programmed with the TIMEOUT command and the number of
vectors transferred . No status readback or abort of timed tests is possible .
Data cannot be modified during timed type tests, since commands are not
recognized until the test completes . Memory Emulation is a special case of
block handshake testing, allowing both input an output with a common
shared RAM area, and running continuously from INITIATE until an
ABORT command.

Example: INITIATE:BLOCK

See Also: TEST, FIELD, VECTOR:DATA, INITIATE:IN, INITIATE:OUT, HAND-
SHAKE, MEMEMULATION, BLKINHANDSHAKE,
BLKOUTHANDSHAKE, BLKINTIMED, BLKOUTTIMED

TEST

IO50 / IO100 User's Manual 3-17

Rev. 02Interface Technology

Chapter 3: Command Set

TEST

Function: Assigns a specific test function to one of four available connector signal
groups.

Syntax: TEST

Remarks: This root command has no direct action, but used in conjunction with
subsequent branch commands DEFINE and NAME, can assign or modify
modes of operation . Four tests can be defined at once, but only one can be
active at any time . The test names correspond to connector letters because
each connector has a set of handshake signal lines . These handshake
signals are used to control data flow within the various test types . The test
operation defined as A will use the set of handshake signals on connector A
to move data between the UUT and the IO50/IO100, however, data pins
from any of the four connectors may be included under any test . The pins
to be used in each test are defined in FIELD commands . Any fields de-
fined while a given test is the active system test will be attached to that test .
The first field defined under a given test will be come the active field for
that test . Each test will have its own active field . The SYSTEM:TEST
command can be used to set or determine the active test . The
SYSTEM:FIELD command can be used to determine or set the active
FIELD for the active test . The Operation section describes the theory of
operation for the various test types.

Example: TEST:DEFINE A:BLKOUTHANDSHAKE:SIZE 100

See Also: FIELD

TEST

3-18 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST

:DEFINE

Function: Assign a test operation to one of the four test control groups.

Syntax: DEFINE <test_name>

Range: A | B | C | D

Default: None

Remarks: The first test defined after power up or reset becomes the active test . When
fields are defined, they are attached to the currently active test . To deter-
mine or change the currently active test, the SYSTEM:TEST command can
be used . If the active test is deleted, another must be assigned before any
field definition or initiate commands can be executed . Multiple tests may
be defined, but the INITIATE and ABORT commands will effect only the
active test.

Example: TEST:DEFINE A:PRGIOHANDSHAKE

See Also: TEST, TEST:NAME, FIELD, FIELD:DEFINE

TEST:DEFINE

:MEMEMULATION

Function: Sets defined test to perform memory emulation operation.

Syntax: MEMEMU[LATION]

Remarks: This type of test provides a random data access capability allowing the
UUT to address memory locations in the IO50/IO100 . Handshake signals
and tristate controls can be used to facilitate direct connection of IO50/
IO100 data pins to UUT internal data bus structures . The depth of memory
to be emulated can be from 1 to 8196 data values . These data values can
be from 1 to 128 bits wide . The subsequent SIZE command will allocate
internal storage for the user supplied data values . The test is started using
the INITIATE:BLOCK command and continues to execute until the
ABORT command is sent . The Programmed I/O Output Timed test opera-
tion can be performed while the Memory Emulation test is executing . In
that case, the SYSTEM:TEST command is used to switch the active test
before sending the INITIATE and ABORT commands.

See Also: INITIATE:BLOCK, ABORT, SYSTEM:TEST

IO50 / IO100 User's Manual 3-19

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:DEFINE:MEMEMULATION

:SIZE

Function: Allocate data memory space for Memory Emulation.

Syntax: SIZE <decimal>

Range: 2(0-13)

Default: None

Remarks: Each of the defined tests require data storage in the shared RAM area . This
memory is allocated from a common pool . Each block type test defined
will use the amount of vector space indicated by the size parameter . Each
data vector takes up 16 bytes of shared RAM, in the format shown in
Section 5, Register Programming . The Memory Emulation uses the same
memory locations for input and output data, giving the appearance of RAM
from the UUT perspective . Once allocated, the VECTOR:DATA can be
used to fill the shared memory space with “read” data for the UUT . The
maximum size is 8192 data vectors for memory emulation, and the data
word size is from 1 to 32 bits per field . For output words up to 128 bits,
multiple fields may be defined . To delete inactive tests and return allo-
cated memory to the free pool, use the TEST:NAME:DELETE command.

Example: TEST:DEFINE D:MEMEMULATION:SIZE 512

See Also: FIELD, VECTOR:DATA

3-20 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:DEFINE

:BLKOUTHANDSHAKE

Function: Sets defined test letter to block data output operation.

Syntax: BLKOUTH[ANDSHAKE]

Remarks: This test operation provides the capability to move a block of data from the
IO50/IO100 shared memory area to the UUT, with data flow controlled by
the UUT . An interrupt can be sent to the Slot 0 Controller after the last
data value has been output . The STATUS commands are used to enable
this interrupt . This test can provide a FIFO-like speed decoupling between
the IO50/IO100 and some other data receiving device . The shared memory
data values can be filled by DMA or direct write from the Slot 0 Controller,
then passed out at an asynchronous slower rate . Another use of the block
output function is to output data vectors at a higher rate than would be
possible using high level commands . The Operation section has more
information about the Block Out Handshake function . This operation is
normally used only with UUTs containing some intelligent control over
their incoming data flow.

See Also: TEST, STATUS:OPERATION, INITIATE, ABORT, TEST:NAME

IO50 / IO100 User's Manual 3-21

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:DEFINE:BLKOUTHANDSHAKE

:SIZE

Function: Allocate data memory space for the block data output test function.

Syntax: SIZE <decimal>

Range: The lesser of (1-15,360 | free_memory)

Default: None

Remarks: Each of the defined tests require data storage in the shared RAM area . This
memory is allocated from a common pool . Each block type test defined
will use the amount of vector space indicated by the size parameter . Each
data vector takes up 16 bytes of shared RAM, in the format shown in
Section 5, Register Programming . Once allocated, the VECTOR:DATA
can be used to fill the shared memory space with output data for the UUT .
The maximum data word size is from 1 to 32 bits per field . To delete
inactive tests and return allocated memory to the free pool, use the
TEST:NAME:DELETE command.

Example: TEST:DEFINE A:BLKOUTHANDSHAKE:SIZE 150

See Also: TEST, FIELD, VECTOR:DATA, TEST:FREE?

3-22 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:DEFINE

:BLKINHANDSHAKE

Function: Sets defined test letter to perform the block data input operation.

Syntax: BLKINH[ANDSHAKE]

Remarks: This test operation provides the capability to move a block of data from the
UUT to the IO50/IO100 shared memory area, with data flow controlled by
the UUT . An interrupt can be sent to the Slot 0 Controller after the last
data value has been input . The STATUS commands are used to enable this
interrupt . This test can provide a FIFO-like speed decoupling between the
IO50/IO100 and some other data transmitting device . The shared memory
data values can be filled by the UUT at some rate it determines, then read
by the Slot 0 using hardware DMA, direct read operations or
VECTOR:DATA:VALUE? . Another use of the block input function is to
transfer data vectors at a higher rate than would be possible using high level
commands . This operation is normally used only with UUTs containing
some intelligent control over their outgoing data flow.

See Also: STATUS:OPERATION, INITIATE, ABORT

IO50 / IO100 User's Manual 3-23

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:DEFINE:BLKINHANDSHAKE

:SIZE

Function: Allocate data memory space for block input data.

Syntax: SIZE <decimal>

Range: The lesser of (1-15,360 | free_memory)

Default: None

Remarks: Each of the defined tests require data storage in the shared RAM area . This
memory is allocated from a common pool . Each block type test defined
will use the amount of vector space indicated by the size parameter . Each
data vector takes up 16 bytes of shared RAM, in the format shown in
Section 5, Register Programming . The user may use the VECTOR:DATA
command to initialize the data to some other value before beginning the test
operation . The maximum data word size is from 1 to 32 bits per field . For
input words up to 128 bits, multiple fields may be defined . To delete
inactive tests and return allocated memory to the free pool, use the
TEST:NAME:DELETE command.

Example: TEST:DEFINE B:BLKINHANDSHAKE:SIZE 150

See Also: FIELD, VECTOR:DATA, TEST:FREE?

3-24 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:DEFINE

:BLKOUTTIMED

Function: Sets defined test to timed block data output operation.

Syntax: BLKOUTT[IMED]

Remarks: This test operation provides the capability to move a block of data from the
IO50/IO100 shared memory area to the UUT, with data flow at a pro-
grammed rate . An interrupt can be sent to the Slot 0 Controller after the
last data value has been output . The STATUS command is used to enable
this interrupt . This test can provide output to UUT devices with clocked or
latched input data requirements, but no local intelligence to control data
flow . The IO50/IO100 will provide a clocking strobe with each data value
output . The TEST:NAME:TIMEOUT command can be used to control the
rate of data output and adjust the data setup or hold time in relation to the
strobe output . The shared memory data values for output can be filled by
direct write from the Slot 0 Controller, or using the VECTOR:DATA
command . Once the test is started, no other commands will be executed
until the entire block has been output.

See Also: TEST, STATUS:OPERATION, INITIATE, TEST:NAME

IO50 / IO100 User's Manual 3-25

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:DEFINE:BLKOUTTIMED

:SIZE

Function: Allocate data memory space for block data output.

Syntax: SIZE <decimal>

Range: The lesser of (1-15,360 | free_memory)

Default: None

Remarks: Each of the defined tests require data storage in the shared RAM area . This
memory is allocated from a common pool . Each block type test defined
will use the amount of vector space indicated by the size parameter . Each
data vector takes up 16 bytes of shared RAM, in the format shown in
Section 5, Register Programming . The user may use the VECTOR:DATA
command to initialize the data to some other value before beginning the test
operation . The maximum data word size is from 1 to 32 bits per field . For
input words up to 128 bits, multiple fields may be defined . To delete
inactive tests and return allocated memory to the free pool, use the
TEST:NAME:DELETE command.

Example: TEST:DEFINE A:BLKOUTTIMED:SIZE 4

See Also: TEST, FIELD, VECTOR:DATA, TEST:FREE?

3-26 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:DEFINE

:BLKINTIMED

Function: Sets defined test letter to block data input operation.

Syntax: BLKINT[IMED]

Remarks: This test operation provides the capability to move a block of data from the
UUT to shared memory in the IO50/IO100, with data flow at a programmed
rate . An interrupt can be sent to the Slot 0 Controller after the last data
value has been transferred . The STATUS command is used to enable this
interrupt . This test can provide input from UUT devices which must have
data clocked out, but have no local intelligence to control data flow . The
IO50/IO100 will provide a clocking strobe for each data value input . The
TEST:NAME:TIMEOUT command can be used to control the rate of data
input and adjust the data setup or hold time in relation to the read strobe .
The shared memory data are filled as they are read from the UUT, and can
then be read directly by the Slot 0 Controller, or using the VECTOR:DATA
command . Once the test is started, no other commands will be executed
until the entire block has been input.

See Also: STATUS:OPERATION, INITIATE

IO50 / IO100 User's Manual 3-27

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:DEFINE:BLKINTIMED

:SIZE

Function: Allocate data memory space for block data input .

Syntax: SIZE <decimal>

Range: The lesser of (1-15,360 | free_memory)

Default: None

Remarks: Each of the defined tests require data storage in the shared RAM area . This
memory is allocated from a common pool . Each block type test defined
will use the amount of vector space indicated by the size parameter . Each
data vector takes up 16 bytes of shared RAM, in the format shown in
Section 5, Register Programming . The user may use the VECTOR:DATA
command to initialize the data to some other value before beginning the test
operation . The maximum data word size is from 1 to 32 bits per field . For
input words up to 128 bits, multiple fields may be defined . To delete
inactive tests and return allocated memory to the free pool, use the
TEST:NAME:DELETE command.

Example: TEST:DEFINE A:BLKINTIMED:SIZE 4

See Also: FIELD, VECTOR:DATA, TEST:FREE?

3-28 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:DEFINE

:PRGIOHANDSHAKE

Function: Sets specified test for handshake controlled input/output.

Syntax: PRGIOH[ANDSHAKE]

Remarks: This test provides single data value input and output, with the UUT control-
ling data flow . Data locations for input and output are separate, much like
a full duplex communication peripheral . To perform output, the Slot 0
Controller will first prepare an output data vector . The VECTOR:DATA
command can be used, or direct memory access to the vector location in
shared memory . The INITIATE:OUT command is then sent to attempt
data output . The IO50/IO100 will then wait for an output request on the
handshake input from the UUT before transferring data . The
TEST:NAME:STATUS? command can be used by the Slot 0 Controller to
determine if the data has been transferred . Alternatively, the STATUS
command can be used to enable an interrupt when the UUT has received the
pending data value and is ready for the next . If an attempt is made to send
a second data value before the first has been transferred, an error is gener-
ated . At any time, the ABORT command may be sent to halt a pending
transfer.

Input operation is similar, with the UUT sending a read request to the IO50/
IO100 when it has data available . If the INITIATE:IN command has been
executed, this request will cause data to be read to the input vector location
. If the input interrupt is enabled, a Slot 0 interrupt is sent after the data has
been read . The TEST:NAME:STATUS? command can be used to deter-
mine if any data has been transferred . The Slot 0 Controller may access the
input data with the VECTOR:DATA command, or direct read of shared
memory.

An acknowledge signal is sent to the UUT at the completion of each data
transfer, forming an interlocked handshake sequence . For output data, the
acknowledge is sent when valid data is available on the IO50/IO100 output
pins . For input, the acknowledge handshake is sent when the UUT data
has been latched in from the IO50/IO100 input pins . The Operation section
contains more information on the Programmed I/O Handshake operation
and the use of handshake signals.

Example: TEST:DEFINE C:PRGIOHANDSHAKE

See Also: INITIATE, ABORT, VECTOR

IO50 / IO100 User's Manual 3-29

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:DEFINE

:PRGIOTIMED

Function: Sets specified test for timed input/output.

Syntax: PRGIOT[IMED]

Remarks: This test provides single data value input and output, with a strobe signal
available to the UUT . Data locations for input and output are separate,
much like a full duplex communication peripheral . To perform output, the
Slot 0 Controller will first prepare an output data vector . The
VECTOR:DATA command can be used, or direct memory access to the
vector location in shared memory . The INITIATE:OUT command is then
used to send data output and set the strobe signal to the opposite state . The
IO50/IO100 will then wait for an programmed time interval before return-
ing the strobe to its initial level . The STATUS command can be used to
enable an interrupt when the UUT has received the pending data value and
is ready for the next one . The TEST:NAME:TIMEOUT command is used
to set the strobe timing value.

Input operation is similar, with INITIATE:IN command used to read data
from the UUT . When the command is sent, the IO50/IO100 input strobe is
set to the opposite state . After the programmed timeout value, the IO50/
IO100 will latch data on its input pins and set the strobe back to its initial
value . If the input interrupt is enabled, a Slot 0 interrupt is sent after the
data has been read . The Slot 0 Controller may access the input data with
the VECTOR:DATA command, or direct read of shared memory.

 Example: TEST:DEFINE A:PRGIOTIMED

See Also: TEST:NAME:TIMEOUT, INITIATE, ABORT, VECTOR

TEST

3-30 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST

:NAME

Function: Used to select previously defined tests for inquiry, deletion, or modification
of configuration .

Syntax: NAME <test_name>

Range: A | B | C | D | ALL

Default: None

Remarks: This branch command performs no direct action, but allows a test to be
selected for action by subsequent branch commands . The name ALL can
be used to effect all defined tests . To determine the existing tests and their
allocated memory, the TEST:NAME ALL:CATALOG? command can be
used.

Example: TEST:NAME A:TIMEOUT:INPUT 100

IO50 / IO100 User's Manual 3-31

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:NAME

:STATUS

Function: Provide execution state and data transfer information on the named test .

Syntax: STAT[US]?

Response: A | B | C | D, EXECUTING | STOPPED, output_vector, input_vector

Range: Programmed I/O is the only test which returns both an input and an output
vector number . This number ranges from 0 to 1 . Memory Emulation will
have the number of the last vector accessed . This number can be from 0 to
the maximum allocated vector number . The other tests will have either an
input or output vector number, which will increase from 0 at the start of the
test, to the last (highest) vector number allocated at the end of the test.

Remarks: Once a handshake type test is started with the INITIATE command, its
completion can be determined by using the STATUS? query . This com-
mand is ineffective for monitoring timed type tests, since status will not be
returned until the test completes . The last accessed vector numbers can be
read after terminating the test with an ABORT command, to determine how
much data was transferred.

Example: TEST:NAME A:STATUS?
A,EXECUTING,1,0

See Also: TEST:DEFINE, TEST:NAME:CATALOG, INITIATE, ABORT

TEST:NAME

3-32 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:NAME

:DELETE

Function: Deletes named test or all tests.

Syntax: DEL[ETE]

Remarks: The test specified by name is deleted and all memory allocated to that test
will become free . If the test deleted was the currently active test, a new
active test must be specified before any FIELD:DEFINE commands can be
executed . The SYSTEM:TEST command can be used to determine and
assign the active test . Tests cannot be deleted while they are executing, the
ABORT command must be sent first to stop any operations in progress .
Tests need not be deleted when another test is started, they can simply
remain inactive . Tests are deleted when a new function is required of a
connector handshake signal set already in use, or when more shared
memory area is required by another test.

Example: TEST:NAME C:DELETE

See Also: TEST, FIELD, TEST:DEFINE, TEST:NAME:CATALOG?, ABORT

TEST:NAME

:CATALOG?

Function: Read information about named test or all tests.

Syntax: CAT[ALOG]?

Response: {A | B | C | D, MEMEMULATION | BLKOUTHANDSHAKE |
BLKINHANDSHAKE | BLKOUTTIMED | BLKINTIMED |
PRGIOHANDSHAKE | PRGIOTIMED, byte_offset, number_vectors.}

Remarks: The byte offset can be added to the shared RAM base address to directly
access data vectors . Each data vector requires 16 bytes or memory in the
format shown in section 5, Register Programming . If the NAME command
preceding CATALOG? specified a particular test name, only data pertinent
to that test is returned . If the NAME command specified ALL, data for all
tests is returned in alphabetical order.

Example: TEST:NAME A:CAT?
A,MEMULATION,128,4096

See Also: TEST:DEFINE, TEST:NAME:STATUS?, VECTOR

IO50 / IO100 User's Manual 3-33

Rev. 02Interface Technology

Chapter 3: Command Set

TEST

:HANDSHAKE

Function: Optional command used in setting polarity of request and acknowledge
handshake signal outputs to match UUT requirements.

Syntax: [HAND[SHAKE]]

Remarks: This command is optional, but may be used for documentation within a test
program . The purpose of the command is to provide a pathway for setting
the polarity of the request handshake signals from the UUT, and the ac-
knowledge signals from the IO50/IO100.

See Also: PRGIOHANDSHAKE, BLKOUTHANDSHAKE, BLKINHANDSHAKE,
MEMEMULATION

TEST:HANDSHAKE

:REQUEST

Function: Allow setting and readback request handshake polarity input from UUT.

Syntax: REQ[UEST]

Remarks: Request signals are input from the UUT to allow external asynchronous
control of data flow . Separate request lines are available on each connector
for read and write . The request handshake polarity command will effect
only the polarity of the signal on the currently active test connector . The
active test is changed with the SYSTEM:TEST command, and determined
with the SYSTEM:TEST? command . The polarity control will not take
effect until the INITIATE command is sent . Separate branch commands
are available to invert the input and output request signals independently .
Section 3, Operation shows timing information for the handshake signals
and interlocked operation requirements.

3-34 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:HANDSHAKE:REQUEST

:INPUT

Function: Set request signal polarity for data input from the UUT.

Syntax: [IN[PUT]] <polarity>

Range: NORM[AL] | INV[ERTED]

Default: NORMAL

Remarks: The internal interrupt logic requires a low level signal to generate an inter-
rupt . If the UUT request signal is low when it has valid data for the IO50/
IO100 to read, normal polarity should be selected . If the UUT signal is
high when presenting valid data, the inverted selection should be used .
The UUT should observe interlocked handshake operation with the request
signals, as shown in Section 3, Operation . The request signals are not
latched, and should be held until an acknowledge signal is received back
from the IO50/IO100.

NOTE: The request signal inputs are pulled high by resistors on board, so if they are
unconnected and programmed for inverted polarity, spurious interrupts
will occur.

Example: TEST:HANDSHAKE:REQUEST:INPUT NORMAL

See Also: TEST, REQUEST, INITIATE, REQUEST:INPUT?

IO50 / IO100 User's Manual 3-35

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:HANDSHAKE:REQUEST

:INPUT?

Function: Read back current programmed setting for polarity of the input request
signal.

Syntax: INPUT?

Response: A | B | C | D), INVERTED | NORMAL.

Remarks: Returns the last programmed request polarity for only the active test . The
active test is changed with the SYSTEM:TEST command, and determined
with the SYSTEM:TEST? command.

Example: TEST:HANDSHAKE:REQUEST:INPUT?
A,INVERTED

See Also: TEST, REQUEST, INITIATE, REQUEST:INPUT

3-36 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:HANDSHAKE:REQUEST

:OUTPUT

Function: Set the request output polarity.

Syntax: OUTPUT <polarity>

Range: NORM[AL] | INV[ERTED]

Default: NORMAL

Remarks: The internal interrupt logic requires a low level signal to generate an inter-
rupt . If the UUT request signal is low when it requests valid data from the
IO50/IO100, normal polarity should be selected . If the UUT signal is high
when requesting valid data, the inverted selection should be used . The
UUT should observe interlocked handshake operation with the request
signals, as shown in Chapter 3, Operation . The request signals are not
latched, and should be held until an acknowledge signal is received back
from the IO50/IO100.

NOTE: The request signal inputs are pulled high by resistors on board, so if they are
unconnected and programmed for inverted polarity, spurious interrupts
will occur.

Example: TEST:HANDSHAKE:REQUEST:OUTPUT INVERTED

TEST:HANDSHAKE:REQUEST

:OUTPUT?

Function: Read back current programmed setting for polarity of the output request
signal.

Syntax: OUTPUT?

Response: A | B | C | D, INVERTED | NORMAL.

Remarks: Returns the last programmed request polarity for only the active test . The
active test is changed with the SYSTEM:TEST command, and determined
with the SYSTEM:TEST? command.

Example: TEST:HANDSHAKE:REQUEST:OUTPUT?
A,INVERTED

See Also: TEST, REQUEST, INITIATE, REQUEST:OUTPUT

IO50 / IO100 User's Manual 3-37

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:HANDSHAKE

:ACKNOWLEDGE

Function: Sets polarity of acknowledge handshake signal outputs to match UUT
requirements . Not allowed if currently active test is Memory Emulation.

Syntax: [ACK[NOWLEDGE]]

Remarks: This command is optional, but may be used for documentation within a test
program . The purpose of the command is to provide a pathway for setting
the polarity of the acknowledge handshake output generated by the IO50/
IO100 at the completion of data transfer . Polarity of the separate input and
output handshake signals can be set independently . The Memory Emula-
tion test functions only with inverted polarity acknowledge handshake
signals, errors are generated if commands attempt to alter this polarity .
There is one set of input and output handshake lines on each of the four
output connectors . The acknowledge polarity command only effects
signals on the active test connectors, and they are set to the programmed
value of the active test when that test is initiated . Merely changing the
active test will not reinitialize the polarity control . The active test is
changed with the SYSTEM:TEST command, and determined with the
SYSTEM:TEST? command . Test execution is started with the INITIATE
command . Section 3, Operation, shows timing information for the hand-
shake signals and interlocked operation requirements.

See Also: TEST, PRGIOHANDSHAKE, BLKOUTHANDSHAKE,
BLKINHANDSHAKE, MEMEMULATION, HANDSHAKE

TEST:HANDSHAKE:ACKNOWLEDGE

3-38 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:HANDSHAKE:ACKNOWLEDGE

:INPUT

Function: Used to set polarity of the acknowledge signal sent by the IO50/IO100 at
the completion of data input from the UUT.

Syntax: INPUT

Range: NORMal | INVerted

Default: NORMal

Remarks: The acknowledge handshakes are output in both timed and handshake type
tests . The normal input handshake polarity will provide a high level signal
when the IO50/IO100 has received and latched UUT data . This acknowl-
edge signal will return low when the UUT requesting handshake signal is
made inactive . In this normal mode of operation, the acknowledge signal
output driver is always enabled . If inverted polarity is specified, the ac-
knowledge signal is initially high impedance pulled high by the on board or
UUT pull up resistor . When data has been read, the acknowledge signal
output driver is enabled driving a low level . When the requesting hand-
shake is made false, the driver immediately returns to high impedance
output . This type of output can be tied to UUT open collector acknowl-
edge signals . During timed type tests, the acknowledge signals are re-
moved after a programmed delay, regardless of request handshake levels.

Example: TEST:HANDSHAKE:ACKNOWLEDGE:INPUT INVERTED

See Also: TEST, ACKNOWLEDGE, INITIATE, ACKNOWLEDGE:INPUT?

TEST:HANDSHAKE:ACKNOWLEDGE

IO50 / IO100 User's Manual 3-39

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:HANDSHAKE:ACKNOWLEDGE

:INPUT?

Function: Used to read back current programmed setting for polarity of the acknowl-
edge output signal.

Syntax: INPUT?

Response: A | B | C | D, INVERTED | NORMAL.

Remarks: Returns the last programmed acknowledge polarity for only the active test .
The active test is changed with the SYSTEM:TEST command, and deter-
mined with the SYSTEM:TEST? command.

Example: TEST:HANDSHAKE:ACKNOWLEDGE:INPUT?
NORMAL

See Also: TEST, ACKNOWLEDGE, INITIATE, ACKNOWLEDGE:INPUT

TEST:HANDSHAKE:ACKNOWLEDGE

3-40 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:HANDSHAKE:ACKNOWLEDGE

:OUTPUT

Function: Used to set the acknowledge output polarity.

Syntax: OUTPUT

Range: NORM[AL] | INV[ERTED]]

Default: NORMAL

Remarks: The acknowledge handshakes are output in both timed and handshake type
tests . The normal output handshake polarity will provide a high level
signal when the IO50/IO100 has output data to the UUT . This acknowl-
edge signal will return low when the UUT requesting handshake signal is
made inactive . In the normal mode of operation, the acknowledge signal
output driver is always enabled . If inverted polarity is specified, the ac-
knowledge signal is initially high impedance, pulled high by pull up resis-
tors . When data has been output, the driver is enabled, driving a low level .
When the requesting handshake is made false, the driver returns to the high
impedance state . This type of output can be tied to UUT open collector
acknowledge signals . During timed type tests, the acknowledge signals are
removed after a programmed delay, regardless of request handshake levels.

Example: TEST:HANDSHAKE:ACKNOWLEDGE:OUTPUT INVERTED

See Also: TEST, ACKNOWLEDGE, INITIATE

IO50 / IO100 User's Manual 3-41

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:HANDSHAKE:ACKNOWLEDGE

:OUTPUT?

Function: Read back the polarity of the output acknowledge signal.

Syntax: OUTPUT?

Response: A | B | C | D, INVERTED | NORMAL.

Remarks: Returns the last programmed acknowledge polarity for only the active test .
The active test is changed with the SYSTEM:TEST command, and deter-
mined with the SYSTEM:TEST? command.

Example: TEST:HANDSHAKE:ACKNOWLEDGE:OUTPUT?
NORMAL

See Also: TEST, ACKNOWLEDGE, INITIATE, ACKNOWLEDGE:OUTPUT

3-42 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

THIS PAGE INTENTIONALLY LEFT BLANK

IO50 / IO100 User's Manual 3-43

Rev. 02Interface Technology

Chapter 3: Command Set

TEST

:TIMEOUT

Function: Sets time between data and acknowledge handshake signal output . Valid
only for timed type tests.

Syntax: TIM[EOUT]

Remarks: The IO50/IO100 will output an acknowledge signal on data input and
output for UUT devices requiring clocks to transfer data . The time be-
tween the strobe edge and the data transfer can be altered with a pro-
grammed delay . This delay, in combination with the ability to program the
polarity of the acknowledge handshake signal, allows setup or hold time to
be increased . See section 3, Operation, for timing information . The
INPUT and OUTPUT branch commands contain independent delay values
for in and out acknowledge signals . Note that the timed block move
instructions run to completion once initiated, without allowing new com-
mand processing . If the delay for a timed block test is large, and the test
moves several thousand data vectors, several seconds may elapse before the
operation completes . The timeout commands effect the currently active
test . The active test can be set with the SYSTEM:TEST command and
determined with SYSTEM:TEST?.

See Also: TEST, HANDSHAKE, ACKNOWLEDGE, TIMEOUT:INPUT,
TIMEOUT:OUTPUT.

3-44 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:TIMEOUT

:INPUT

Function: Used to set time delay from when IO50/IO100 complements the initial
acknowledge handshake signal level to when UUT data is read in and
latched.

Syntax: [IN[PUT]] <seconds>

Range: 0 to 1E-3, 1us resolution

Default: 0

Remarks: The default unit is seconds, but the us or ms suffix may be used, as well as
scientific notation . The acknowledge handshake for input is provided to
clock a new data value out of a UUT before data inputs are read . The
normal sequence is to change the initial level of the acknowledge signal,
then open and close the IO50/IO100 input data latch to capture data, then
return the acknowledge signal to the initial level . Any timeout value
programmed will increase the time between the acknowledge signal change
and when the data is latched . This time can be thought of as the UUT
access time from strobe to data output . The initial state of the acknowledge
signal will be low if it is programmed for normal polarity, and high if
programmed as inverted . For block data transfer type tests, increasing the
timeout delay will decrease the data rate and increase the test completion
time . Separate timeout values are retained for each defined test, and are
used when that test is initiated . Programmed I/O Timed is the only test
using both an input and output timeout delay . Block Input uses only the
input timeout value, and Block Output only the output value . The ac-
knowledge signals have different drive characteristics depending on the
polarity programmed . The Operation section and
HANDSHAKE:ACKNOWLEDGE command section have more informa-
tion.

Example: TEST:TIMEOUT:INPUT .000001
TEST:TIMEOUT:INPUT 20 e-6
TEST:TIMEOUT:INPUT 10 us
TEST:TIMEOUT:INPUT .5 ms

See Also: TEST, PRGIOTIMED, BLKINTIMED, BLKOUTTIMED, INITIATE,
TEST:TIMEOUT:INPUT?

IO50 / IO100 User's Manual 3-45

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:TIMEOUT

:INPUT?

Function: Used to read programmed time delay.

Syntax: IN[PUT]?

Response: A | B | C | D, seconds.

Remarks: The test name will always be that of the active test, since the timeout
commands effect only that test . To query values for other tests, the
SYSTEM:TEST command can be used to change the active test.

Example: TEST:TIMEOUT:INPUT?
D,.0005

See Also: TEST, TEST:TIMEOUT:INPUT

3-46 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST:TIMEOUT

:OUTPUT

Function: Used to set the time delay from when IO50/IO100 outputs data and comple-
ments the initial acknowledge handshake signal level until the acknowledge
signal returns to the initial level.

Syntax: OUT[PUT] <seconds>

Range: 0 to 1E-3, 1us resolution

Default: 0

Remarks: The default unit is seconds, but the us or ms suffix may be used, as well as
scientific notation . The acknowledge handshake for output is provided to
clock a new data value into the UUT after IO50/IO100 output data is valid .
The normal sequence is to output data, then change the initial level of the
acknowledge signal, then return the acknowledge signal to the initial level .
Any timeout value programmed will increase the time between the output
of data and the return of the acknowledge signal to the initial value . This
time can be thought of as the UUT setup time from data input to write clock
. The initial state of the acknowledge signal will be low if it is programmed
for normal polarity, and high if programmed as inverted . For block data
transfer type tests, increasing the timeout delay will decrease the data rate
and lengthen the test completion time . Separate timeout values are retained
for each defined test, and are used when that test is initiated . Programmed
I/O Timed is the only test using both an input and output timeout delay .
Block Input uses only the input timeout value, and Block Output only the
output value . The acknowledge signals have different drive characteristics
depending on the polarity programmed.

Example: TEST:TIMEOUT:OUTPUT .00045
TEST:TIMEOUT:OUTPUT 25 e-6
TEST:TIMEOUT:OUTPUT 250 us
TEST:TIMEOUT:OUTPUT .1ms

See Also: PRGIOTIMED, BLKINTIMED, BLKOUTTIMED, INITIATE,
TEST:TIMEOUT:OUTPUT?, HANDSHAKE:ACKNOWLEDGE

IO50 / IO100 User's Manual 3-47

Rev. 02Interface Technology

Chapter 3: Command Set

TEST:TIMEOUT

:OUTPUT?

Function: Used to read programmed time delay.

Syntax: OUT[PUT]?

Response: A | B | C | D, seconds.

Remarks: The test name will always be that of the active test, since the timeout
commands effect only that test . To query values for other tests, the
SYSTEM:TEST command can be used to change the active test.

Example: TEST:TIMEOUT:OUTPUT?
C,.00035

3-48 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

TEST

:ADDR

Function: Designates a field as an address input in Memory Emulation.

Syntax: ADDR <field_name>

Remarks: This command is valid only in the Memory Emulation test . It specifies a
input field to be used as an address into the shared memory pool for emulat-
ing ROM or RAM . The pins in this field are specified by the user when the
field name is defined . The order in which the pins are listed in the defini-
tion command will be most significant first to least significant last (right to
left) . The field can be no more than 13 pins wide, since only 8192 vector
addresses are available for memory emulation.

Example: TEST:NAME A:ADDR ROMADDR

See Also: MEMEMULATION, FIELD

TEST

:ADDR?

Function: Queries the current specified address field for Memory Emulation.

Syntax: ADDR?

Response: field name (string of 8 or less characters).

Example: TEST:NAME A:ADDR?
ADDR_FLD

See Also: TEST, MEMEMULATION, FIELD

IO50 / IO100 User's Manual 3-49

Rev. 02Interface Technology

Chapter 3: Command Set

TEST

:FREE?

Function: Used to read remaining available data space in shared RAM.

Syntax: FREE?

Response: available_data_vectors

Remarks: Each vector location represents 16 bytes of shared RAM space in the format
shown in section 5, Register Programming . The TEST:NAME
ALL:CATALOG? command can be used to determine the amount of
memory allocation for each test, and the address offset to that memory .
Shared memory area can be freed by deleting non-active tests.

Example: TEST:FREE?
512

See Also: VECTOR:DATA, TEST:NAME:DELETE.

3-50 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

VECTOR

Function: Used to define or read shared memory data values .

Syntax: VEC[TOR] <data_vector>

Range: 1 to 15,360

Default: None

Remarks: Shared memory is divided into 16 byte data vectors for use by tests . This
memory is allocated from a memory pool to tests in the order they are
defined . The vector number assigned in this command is used to reference
data locations, regardless of their location in physical memory . The
memory area is “re-packed” whenever a test is deleted, keeping the free
memory in a contiguous address pool at upper memory . This operation
will be transparent to the user if the vector numbers are used to reference
data . The VECTOR command operates on the current active field . The
active field can be determined and set using the SYSTEM:FIELD command
. If several fields are assigned to one test, the DATA:FIELD command
provides capability to temporarily operate on non-active fields.

The Programmed I/O tests take only 2 vectors, one for input and one for
output . The block type tests can use whatever memory remains unallocated
. The input vector memory area must be defined for block tests using this
command, and may be initialized to some value . The output vector
memory must also be defined, and will be filled with user defined data .
The Programmed I/O test allocates vectors automatically, and does not
require definition by the VECTOR command . The TEST:FREE? query
will display any remaining vector locations.

See Also: TEST, FIELD, INITIATE

IO50 / IO100 User's Manual 3-51

Rev. 02Interface Technology

Chapter 3: Command Set

VECTOR

:COUNT

Function: Allows one vector command to execute repeatedly on several vectors.

Syntax: COUN[T] <vectors>

Range: 1 to 15360 | ALL

Default: 1

Remarks: This command will allow repeated operations as a shortcut to entering a
separate Vector command for each vector value . It can be used for entering
several output data vectors starting at the specified vector number . It can
be used to read back several input vectors starting at the specified number .
The count command sets the repetition number on its own branch level,
then the repeated command is executed on the same level . This requires a
semicolon in the command string, as shown in the example . Data values
for the successive data vectors entered under a COUNT command need
only be separated by commas . If the starting vector number plus the count
value exceed either the maximum vector number or the defined vector
block size, then an error will be generated . The ALL parameter will calcu-
late the correct count based on the starting vector number and the defined
vector block size.

Example: VECTOR 1:COUNT 5;DATA:VALUE 1,2,3,4,5

See Also: TEST, FIELD, VECTOR:DATA

VECTOR

:DATA

Function: Allows the user to set and read data values transferred in various tests.

Syntax: DATA

Remarks: Data is stored in shared RAM as vectors for each test . The data is entered
by the user for output type tests, and read by the user for input type tests .
This command does not directly effect memory, but is used with branch
commands to perform the set and read operations.

Example: VECTOR 2:DATA:VALUE?
DA1E

See Also: TEST, FIELD:, VECTOR

3-52 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

VECTOR:DATA

:VALUE

Function: Used to set data in shared RAM memory for output to UUT . Data is
written to the vector number specified in the VECTOR command.

Syntax: VAL[UE] <data_list>

Range: 0-F | 0-1, depending on RADIX

Default: None.

Remarks: When a test performs an output operation, the data will come from one of
the vectors allocated for that test . The VALUE command is used to write
user data to these vector locations . The field which is active when this
command is executed will determine which of 128 vector bits will be
written, and in what order the supplied data is apportioned . Bits of data
supplied will be assigned to output pins in the order given by the
FIELD:DEFINE command pin list . If the number of bits supplied in the
command is less than the field width, the most significant bits will be zero
filled . If more data is supplied than required for the field width, the extra
bits are ignored . The active field is set or determined using the
SYSTEM:FIELD command . The VECTOR:DATA:FIELD command can
be used to temporarily change the active field within the VECTOR:DATA
command . The VECTOR:COUNT command can be used to enter several
output data values without repeated VALUE commands.

Example: VECTOR 1:DATA:VALUE FFF

VECTOR 1:COUNT 5;DATA:VALUE 003,00A,555,213,955

See Also: FIELD, TEST

IO50 / IO100 User's Manual 3-53

Rev. 02Interface Technology

Chapter 3: Command Set

VECTOR:DATA

:VALUE?

Function: Query command used to read data from a shared RAM vector location .
The vector number specified in the VECTOR command will be read.

Syntax: VAL[UE]?

Response: String of up to 8 hexadecimal or 32 binary digit values.

Remarks: When a test performs a read operation, the input data will fill one of the 16
byte vectors allocated for that test . The VALUE? command is used by the
slot 0 controller to read these vector locations . The field which is active
when this command is executed will determine which of 128 vector bits
will be returned, and in what order . The number of bits returned will
match the number of pins defined in the active field . Bits will be arranged
as listed in the FIELD:DEFINE command pin list, with the most significant
on the left and least significant on the right . If the field width is not on a
hexadecimal boundary, the most significant bits will be zero filled . The
active field is set or determined using the SYSTEM:FIELD command . The
VECTOR:DATA:FIELD command can be used to temporarily change the
active field within the VECTOR:DATA command . The
VECTOR:COUNT command can be used to read several vectors without
sending repeated VALUE? commands.

Example: VECTOR 1:DATA:VALUE?
DA1E

VECTOR 1:COUNT ALL;DATA:VALUE?
0,1,2,3,...511

See Also: TEST, FIELD

3-54 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

VECTOR:DATA

:RADIX

Function: Allows choice between hexadecimal and binary formats for data readback
and write .

Syntax: RAD[IX] <format>

Range: HEX | BIN

Default: HEX

Remarks: When vector data is read back using the VECTOR:DATA:VALUE? com-
mand, it is normally formatted as hexadecimal ASCII characters . This
command will change the readback format to binary ASCII characters for
the duration of a particular VECTOR:DATA command . It does not perma-
nently change the radix . The selection of binary radix also allows output
data vectors to be written as a series of ASCII ones and zeros . The RADIX
command is executed on the same branch level as the VALUE? command it
effects, so a semicolon must be used as shown in the example.

Example: VECTOR 1:DATA:RADIX BIN;VALUE?
1101101000011110

See Also: TEST, FIELD

IO50 / IO100 User's Manual 3-55

Rev. 02Interface Technology

Chapter 3: Command Set

VECTOR:DATA

:FIELD

Function: Temporarily change the active field within the VECTOR command to allow
multiple field operations.

Syntax: FIEL[D] <field_name>

Range: Any valid field name - 1 to 8 character string.

Default: None

Remarks: The VECTOR:DATA commands will normally use the currently active
field to determine data format . The FIELD branch command allows data
for fields other than the active field to be read and written without repeat-
edly executing the SYSTEM:FIELD command . The effects of the FIELD
command within the VECTOR command are temporary, the systems active
field is not changed . The FIELD command is executed on the same branch
level as the VALUE and VALUE? commands, so a semicolon must be used
as shown in the example.

Example: VECTOR 1:DATA:FIELD ROMADD;VALUE 001;FIELD
TABADD;VALUE 6

See Also: VECTOR, VECTOR:DATA, TEST, FIELD

3-56 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

SYSTEM

Function: Provides for setting and readback of global system parameters.

Syntax: SYST[EM]

Remarks: While this command has no direct action of its own, its branch commands
can be used to set or query parameters which are common to several lower
level functions.

SYSTEM

:ERROR?

Function: Query the last error encountered.

Syntax: ERR[OR]?

Response: error_number, error_description

Remarks: The error query returns a text string containing an error number and an error
description . A list of error codes may be found in Appendix C . The
Service Request (SRQ) interrupt may be enabled to generate an SRQ on
error, providing immediate feedback in the event an error condition occurs.

Example: SYSTEM:ERROR?
0,"No Error"

IO50 / IO100 User's Manual 3-57

Rev. 02Interface Technology

Chapter 3: Command Set
See Also: STATUS

SYSTEM

SYSTEM

:VERSION?

Function: Returns the SCPI version supported.

Syntax: VERS[ION]?

Response: year.version

Remarks: Returns a formatted numeric number indicating the SCPI version number
supported for which the IO50/IO100 complies . The number is returned in
the format YYYY.V where YYYY represents the year-version, and V
represents the revision number for that year.

Example: SYSTEM:VERSION?
1992.0

3-58 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

SYSTEM

:FIELD

Function: Used to set the currently active field for the active test.

Syntax: FIEL[D] <field_name>

Range: String of 1 to 8 alphanumeric characters - any valid field name defined by
the user.

Default: None

Remarks: An active field parameter is kept for each of the four tests . This command
will set the active field name for whichever test is currently active . The
SYSTEM:TEST command can be used to determine and set the active test .

Example: SYSTEM:FIELD ROMADDR

SYSTEM

:FIELD?

Function: Used to determine the currently active field for the active test.

Syntax: FIEL[D]?

Response: String of 1 to 8 alphanumeric characters - any valid field name defined by
the user.

Remarks: An active field parameter is kept for each of the four tests . This command
will return the active field name for whichever test is currently active . The
SYSTEM:TEST command can be used to determine and set the active test .

Example: SYSTEM:FIELD?
RAMADDR

See Also: TEST, FIELD, VECTOR

IO50 / IO100 User's Manual 3-59

Rev. 02Interface Technology

Chapter 3: Command Set

SYSTEM

:TEST

Function: Used to set the currently active test.

Syntax: [TEST] <test_name>

Range: A | B | C | D

Default: None

Remarks: Only one test can be active at a time . The letter of the active test corre-
sponds to one of the front panel connectors . The handshake signals on that
connector will be used for data flow control while that test is active . The
first test defined after initialization becomes the active test . Subsequent
definitions of other tests will not change the active test . If the active test is
deleted, another must be defined using the SYSTEM:TEST command to
avoid errors on FIELD and VECTOR commands.

Example: SYSTEM:TEST A

See Also: TEST:DEFINE, FIELD, VECTOR

SYSTEM

:TEST?

Function: Used to determine the currently active test.

Syntax: TEST?

Response: A | B | C | D

Remarks: This command will return the active test name for whichever test is cur-
rently active . This command will typically be used as a diagnostic aid in
error handling routines, since the active test assignment is normally known
to the Slot 0 Controller.

Example: SYSTEM:TEST?
A

See Also: TEST:DEFINE, FIELD, VECTOR

3-60 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

SYSTEM

:LEARN

Function: Used to set up instrument environment with previously saved data.

Syntax: LEARN

Remarks: This command is executed after downloading a file, generated using the
LEARN? command, to the shared memory area . After the file has been
written to the shared RAM area, executing the LEARN command will
cause the local microprocessor to transfer setup and control parameters
from the shared RAM to the local environment . If data vectors were
included in the download file, the complete test environment is restored,
and the INITIATE command can be sent to start operation . All tests must
be stopped before this command can be executed.

Example: SYSTEM:LEARN

See Also: TEST:DEFINE, FIELD, VECTOR

IO50 / IO100 User's Manual 3-61

Rev. 02Interface Technology

Chapter 3: Command Set

SYSTEM

:LEARN?

Function: Used to save instrument environment for later use.

Syntax: LEAR[N]?

Response: None - Although the LEARN? command is terminated with a question
mark, which usually indicates a response will be generated, a response is
not generated for this command.

Remarks: This command will save all internal IO50/IO100 data structures to an area
of shared RAM . These data structures contain field definition, tristate
control information, and other parameters necessary to restore the instru-
ment to its current state . Data values are not modified by this command .
Once this command has been executed, the Slot 0 Controller can upload the
appropriate shared memory area to a file, and save the existing test environ-
ment . The shared memory area to be uploaded will start at the base address
of shared RAM, as assigned by the Slot 0 Controller . The data from the
base address through base address+4000 (hexadecimal) will contain internal
setup information . Data in increasing addresses after that will be the input
and output data vector values defined in the various tests . The slot 0
controller must save the full 256K byte shared memory in order to insure
that all setup and data are properly saved . Each vector count represents 16
bytes of shared RAM . All tests must be stopped before this command can
be executed.

Example: SYSTEM:LEARN?

See Also: TEST, FIELD, VECTOR

3-62 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

SYSTEM

:TRISTATE?

Function: Used to read current input/output configuration for all data pins as defined
in software . This command is not to be confused with the
FIELD:NAME:TRISTATE? query which returns configuration by field
name only . This command does not read back actual signal levels of
tristate driver control signals . That operation is performed as described in
section 5, Register Programming.

Syntax: TRIST[ATE]?

Response: String containing a designator for all four octets of each connector, and an I/
O configuration description.

Remarks: The designators for octets use the following shorthand notation; 1 for pins
1-8, 9 for 9-16, 17 for 17-24, and 25 for 25-32 . These octets are shown for
each connector, listed in alphabetical order starting with A . The I/O con-
figuration is described as :INPUT, OUTPUT, EXTNORMAL, or
EXTINVERTED . These are the attributes assigned with the
FIELD:NAME:TRISTATE command . The condition for all data pins after
power up or reset is INPUT . If pins are assigned to only one field and that
field is deleted, they retain their last configuration.

Example: SYSTEM:TRISTATE?
A1,OUTput,A9,OUTput,A17,OUTput,A25,OUTput,B1,OUTput,
B9,OUTput,B17,OUTput,B25,OUTput,C1,OUTput,C9,OUTput,
C17,OUTput,C25,OUTput,D1,OUTput,D9,OUTput,D17,OUTput,
D25,OUTput,

See Also: FIELD:DEFINE, FIELD:NAME

IO50 / IO100 User's Manual 3-63

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS

Function: Root command for setting status interrupts and accessing the various status
registers.

Syntax: STAT[US]

Remarks: The IO50/IO100 utilizes the 488.2 and SCPI Status Reporting structure for
reading instrument status . Refer to Figure 3-1 for supported status events
(registers/bits) and Figure 3-2 for condition status . The structure for Event
and Condition registers is identical, the difference being that Event Status is
latched (static) while Condition Status is constantly changing as test condi-
tions change (dynamic) . Each event register indicated in the Figure 3-1 is
actually two registers, the status register itself and the corresponding status
enable register . For clarity, only the status registers are shown . Figure 3-3
in the IEEE 488.2 Register section contains more detail on the relationship
between status registers and status enable registers . The status register may
be queried at any time to determine operational status of the IO50/IO100,
even if event interrupts are not enabled . By setting the appropriate enable
bits in the status enable registers, a Service Request (SRQ) interrupt may be
generated when the enabled event occurs . This provides immediate feed-
back to the user.

The structure of the event status registers are several layers deep, with the
IEEE 488.2 registers being the lowest layer and the IO50/IO100 event
registers being the highest . The enable register functions as a mask to the
event status register . To enable a certain status event to generate an SRQ,
set the events corresponding enable bit to a "1" . Setting the enable bit to
"0" disables SRQ generation for that event only . The device dependent
(high level) events may be enabled as desired, and then disabled as a group
by one of the lower layered registers . For example, all of the Test Opera-
tion Status Registers may be disabled and enabled as a group by disabling
and enabling bit 8 of the Operation Status Register.

SCPI defines two reporting register pairs, Operation Status and Question-
able Status . Likewise, IEEE 488.2 defines two register pairs, Standard
Event Status and Status Byte . In both SCPI and 488.2 cases, only the
supported bits in each register are shown in Figures 4-1 and 4-2 . And,
since the SCPI Questionable Status is not supported, the Questionable
Status register is not shown.

See Also: IEEE Register Configuration

STATUS

STATUS:OPERATION

3-64 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

Figure 3-1.
IO50 / IO100 Event Status Structure.

�
�
�
�
�
�
	

�
�
�
�
�
�
	

����������
������������������

��������������
�������������

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�!"#$
�#$"#$
%&��'
�

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�!"#$
�#$"#$
%&��'

�

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�!"#$
�#$"#$
%&��'

�

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�!"#$
�#$"#$
%&��'

�

�
�
�
�
�
�
	

�

��
��
��
��
��
��

(�)

*+,

)����-�%��)������������
)����-�(.�-��

��������
)����-�(.�-��

$-��)������
��������

)����-�(.�-��

$-��/�/
��������

)����-�(.�-��

$-��/�/
��������

)����-�(.�-��

$-��/%/
��������

)����-�(.�-��

$-��/+/
��������

)����-�(.�-��

��������0�
(.�-��-

)�"�
(.�-��

�����1������
(.�-��-

IO50 / IO100 User's Manual 3-65

Rev. 02Interface Technology

Chapter 3: Command Set

Figure 3-2.
IO50 / IO100 Condition Status Structure.

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�!"#$
�#$"#$
%&��'
�

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�!"#$
�#$"#$
%&��'

�

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�!"#$
�#$"#$
%&��'

�

�
�
�
�
�
�
	

�

��
��
��
��
��
��

�!"#$
�#$"#$
%&��'

�

�
�
�
�
�
�
	

�

��
��
��
��
��
��

��������
)����-�(.�-��

$-��)������
��������

)����-�(.�-��

$-��/�/
��������

)����-�(.�-��

$-��/�/
��������

)����-�(.�-��

$-��/%/
��������

)����-�(.�-��

$-��/+/
��������

)����-�(.�-��

)�"�
(.�-��

�����1������
(.�-��-

3-66 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS

:OPERATION

Function: Provides access to the IO50/IO100's normal operating conditions.

Syntax: OPER[ATION]

Remarks: The only operation event supported is bit 8, which is "available to designer"
according to SCPI, Volume 1, Syntax and Style. In the IO50/IO100, bit 8 is
used to enable the Test Operation Summary event. Operational status of
any defined test is available via the Test Operation Status Registers, which,
as a group, are enabled via bit 8 of the Operation Status register.

STATUS:OPERATION

:EVENT?

Function: Query the contents of the Operation Status Event register.

Syntax: [EVENT]?

Response: 0 | 256

Remarks: Reading this register clears it. If the returned value is 0, then no test sum-
mary events are set. If the returned value is 256, then at least one test
summary event is set and the Status Operation Test register should be
queried to determine which test bits are set.

Example: STATUS:OPERATION:EVENT?
256

See Also: STATUS:OPERATION:TEST,
STATUS:OPERATION:TEST:ISUMMARY

IO50 / IO100 User's Manual 3-67

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION

:CONDITION?

Function: Query the contents of the Operation Condition register.

Syntax: COND[ITION]?

Response: 0 | 256

Remarks: The Operation Condition register returns the current status of bit 8 of the
Operation Status register . This register (bit) will reflect whether any test is
complete, or all tests are incomplete, providing a dynamic poll status . The
Condition register is dynamic and is updated immediately as the test status
changes . The Event Status registers provide similar information, however,
the information is latched in the Event register and cleared only when the
Event register is read . The Condition register also differs from the Event
register in that it does not generate SRQ interrupts when test status changes
. Refer to Figure 4-2 for Condition register configurations.

Example: STATUS:OPERATION:CONDITION?
256

3-68 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS:OPERATION

:ENABLE

Function: Set the Status Operation enable mask.

Syntax: ENAB[LE] <mask>

Range: (0 - 32767)

Remarks: While any combination of bit patterns may be set, only bit 8 has any signifi-
cance . Writing a value of 256 will enable the test summary register for
SRQ generation.

Example: STATUS:OPERATION:EVENT 256

STATUS:OPERATION

:ENABLE?

Function: Query the contents of the Status Operation enable mask.

Syntax: ENAB[LE]?

Response: 0 - 32767

Remarks: A query of this register will return the last value written to it . The query is
non-destructive.

Example: STATUS:OPERATION:ENABLE?
256

STATUS:OPERATION:TEST

IO50 / IO100 User's Manual 3-69

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION

:TEST

Function: Provides access to the Operation Test Summary status register.

Syntax: TEST

Remarks: The Operation Test Summary status register combines the results of the
individual Test Operation Status registers to provide a common control/
query path . Bit "1" indicates the one or more of the enabled events for "A"
has occurred . Bit "2" is used for test "B", bit "3" for test "C" and bit "4" for
test "D".

STATUS:OPERATION:TEST

:EVENT?

Function: Query the contents of the Operation Status Test Event register.

Syntax: [EVENT]?

Response: 0 - 30 inclusive, even values only.

Remarks: Reading this register clears it . If the returned value is 0, then no individual
test events are set . If the value is other than 0, then the bit position indi-
cates which individual tests have events set . The appropriate Status Opera-
tion Test Isummary register(s) should be queried to determine which test
events are set.

Example: STATUS:OPERATION:TEST:EVENT?
6

See Also: STATUS:OPERATION:TEST:ISUMMARY

3-70 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST

:CONDITION?

Function: Query the contents of the Operation Test Condition register.

Syntax: COND[ITION]?

Response: 0

Remarks: The Test Condition register returns a summary of the current status of tests
A, B, C, and D . This register will reflect whether any of these tests are
complete or incomplete . The Condition register is dynamic and is updated
immediately as test status changes . The Event Status registers provide
similar information, however, the information is latched in the Event
register and cleared only when the Event register is read . The Condition
register also differs from the Event register in that it does not generate SRQ
interrupts when test status changes . Refer to Figure 4-2 for Condition
register configurations.

Example: STATUS:OPERATION:TEST:CONDITION?
6

IO50 / IO100 User's Manual 3-71

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST

:ENABLE

Function: Set the Status Operation Test enable mask.

Syntax: ENAB[LE] <mask>

Range: (0 - 32767)

Remarks: While any combination of bit patterns may be set, only bits 1, 2, 3 and 4
have any significance . Writing a value of 12 will enable the SRQ genera-
tion for events in test "B" and test "C", if the individual events in those
registers are enabled.

Example: STATUS:OPERATION:TEST:EVENT 12

STATUS:OPERATION:TEST

:ENABLE?

Function: Query the contents of the Status Operation enable mask.

Syntax: ENAB[LE]?

Response: 0 - 32767

Remarks: A query of this register will return the last value written to it . The query is
non-destructive.

Example: STATUS:OPERATION:TEST:ENABLE?
256

3-72 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST

:ISUMMARY1

Function: Provide access to the various test mode status bits for test "A" only.

Syntax: ISUM[MARY1]

Remarks: There are 4 basic test modes, Input, Output, Block and Memory Emulation .
The Memory Emulation test does not have a logical completion . Memory
Emulation test will only stop executing when ABORTed . The other test
modes do have logical completion, i.e . when the contents of the defined
vector memory have been sent or filled (output or input) . The
ISUMMARY branch to the STATUS:OPERATION:TEST command
allows an SRQ to be generated when the Input, Output or Block test has
reached its logical conclusion . There is a separate Event Status register for
each test, A, B, C, and D . Each has its own enable as well . Status may be
checked, regardless of whether an SRQ was generated or not, to determine
test completion . The SRQ interrupt provides immediate notification of test
completion.

See Also: ISUMMARY2, ISUMMARY3, ISUMMARY4

STATUS:OPERATION:TEST:ISUMMARY1

:EVENT?

Function: Query the contents of the Operation Status Test Isummary1 Event register.

Syntax: [EVENT]?

Response: 256 | 512 | 1024

Remarks: Reading this register clears it . If the returned value is 0, then the test is not
complete . If the value is other than 0, then the bit position indicates which
test type is complete . Refer to Figure 4-1.

Example: STATUS:OPERATION:TEST:ISUMMARY1:EVENT?
256

IO50 / IO100 User's Manual 3-73

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST:ISUMMARY1

:CONDITION?

Function: Query the contents of the Operation Test Isummary1 Condition register.

Syntax: COND[ITION]?

Response: 0

Remarks: The Isummary1 Condition register returns the current status of test A . This
register will reflect whether test A is complete or incomplete . The Condi-
tion register is dynamic and is updated immediately as the test status
changes . The Event Status registers provide similar information, however,
the information is latched in the Event register and cleared only when the
Event register is read . The Condition register also differs from the Event
register in that it does not generate SRQ interrupts when test status changes
. Refer to Figure 4-2 for Condition register configurations.

Example: STATUS:OPERATION:TEST:ISUMMARY1:CONDITION?
0

3-74 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST:ISUMMARY1

:ENABLE

Function: Set the Status Operation Test Isummary1 enable mask.

Syntax: ENAB[LE] <mask>

Range: (0 - 32767)

Remarks: While any combination of bit patterns may be set, only bits 8, 9 and 10 have
any significance . Setting bit 8 will cause bit 8 in the Event register to be
set when test "A" completes a Input test . Bit 9 provides a similar function
when a Output test completes . Bit 10 is associated with completion of a
Block test.

Example: STATUS:OPERATION:TEST:ISUMMARY1:ENABLE 12

STATUS:OPERATION:TEST:ISUMMARY1

:ENABLE?

Function: Query the contents of the Status Operation enable mask.

Syntax: ENAB[LE]?

Response: 0 - 32767

Remarks: A query of this register will return the last value written to it . The query
is non-destructive.

Example: STATUS:OPERATION:TEST:ISUMMARY1:ENABLE?
256

IO50 / IO100 User's Manual 3-75

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST

:ISUMMARY2

Function: Provide access to the various test mode status bits for test "B" only.

Syntax: ISUM[MARY2]

Remarks: There are 4 basic test modes, Input, Output, Block and Memory Emulation .
The Memory Emulation test does not have a logical completion . Memory
Emulation test will only stop executing when ABORTed . The other test
modes do have logical completion, i.e . when the contents of the defined
vector memory have been sent or filled (output or input) . The
ISUMMARY branch to the STATUS:OPERATION:TEST command
allows an SRQ to be generated when the Input, Output or Block test has
reached its logical conclusion . There is a separate Event status register for
each test, A, B, C, and D . Each has its own enable as well . Status may be
checked, regardless of whether an SRQ was generated or not, to determine
test completion . The SRQ interrupt provides immediate notification of test
completion.

See Also: ISUMMARY1, ISUMMARY3, ISUMMARY4

3-76 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST:ISUMMARY2

:EVENT?

Function: Query the contents of the Operation Status Test Isummary2 Event register.

Syntax: [EVENT]?

Response: 256 | 512 | 1024

Remarks: Reading this register clears it . If the returned value is 0, then the test is not
complete . If the value is other than 0, then the bit position indicates which
test type is complete . Refer to Figure 4-1.

Example: STATUS:OPERATION:TEST:ISUMMARY2:EVENT?
256

STATUS:OPERATION:TEST:ISUMMARY2

:CONDITION?

Function: Query the contents of the Operation Test Isummary2 Condition register.

Syntax: COND[ITION]?

Response: 0

Remarks: The Isummary2 Condition register returns the current status of test B . This
register will reflect whether test B is complete or incomplete . The Condi-
tion register is dynamic and is updated immediately as the test status
changes . The Event Status registers provide similar information, however,
the information is latched in the Event register and cleared only when the
Event register is read . The Condition register also differs from the Event
register in that it does not generate SRQ interrupts when test status changes
. Refer to Figure 4-2 for Condition register configurations.

Example: STATUS:OPERATION:TEST:ISUMMARY2:CONDITION?
0

IO50 / IO100 User's Manual 3-77

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST:ISUMMARY2

:ENABLE

Function: Set the Status Operation Test Isummary2 enable mask.

Syntax: ENAB[LE] <mask>

Range: (0 - 32767)

Remarks: While any combination of bit patterns may be set, only bits 8, 9 and 10 have
any significance . Setting bit 8 will cause bit 8 in the Event register to be
set when test "A" completes a Input test . Bit 9 provides a similar function
when a Output test completes . Bit 10 is associated with completion of a
Block test.

Example: STATUS:OPERATION:TEST:ISUMMARY2:ENABLE 12

STATUS:OPERATION:TEST:ISUMMARY2

:ENABLE?

Function: Query the contents of the Status Operation Test Isummary2 enable mask.

Syntax: ENAB[LE]?

Response: 0 - 32767

Remarks: A query of this register will return the last value written to it . The query is
non-destructive.

Example: STATUS:OPERATION:TEST:ISUMMARY2:ENABLE?
256

3-78 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST

:ISUMMARY3

Function: Provide access to the various test mode status bits for test "C" only.

Syntax: ISUM[MARY3]

Remarks: There are four basic test modes, Input, Output, Block and Memory Emula-
tion . The Memory Emulation test does not have a logical completion .
Memory Emulation test will only stop executing when ABORTed . The
other test modes do have logical completion, i.e . when the contents of the
defined vector memory have been sent or filled (output or input) . The
ISUMMARY branch to the STATUS:OPERATION:TEST command
allows an SRQ to be generated when the Input, Output or Block test has
reached its logical conclusion . There is a separate Event status register for
each test, A, B, C, and D . Each has its own enable as well . Status may be
checked, regardless of whether an SRQ was generated or not, to determine
test completion . The SRQ interrupt provides immediate notification of test
completion.

See Also: ISUMMARY1, ISUMMARY2, ISUMMARY4

STATUS:OPERATION:TEST:ISUMMARY3

:EVENT?

Function: Query the contents of the Operation Status Test Isummary3 Event register.

Syntax: [EVENT]?

Response: 256 | 512 | 1024

Remarks: Reading this register clears it . If the returned value is 0, then the test is not
complete . If the value is other than 0, then the bit position indicates which
test type is complete . Refer to Figure 4-1.

Example: STATUS:OPERATION:TEST:ISUMMARY3:EVENT?
256

IO50 / IO100 User's Manual 3-79

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST:ISUMMARY3

:CONDITION?

Function: Query the contents of the Operation Test Isummary3 Condition register.

Syntax: COND[ITION]?

Response: 0

Remarks: The Isummary3 Condition register returns the current status of test C . This
register will reflect whether test C is complete or incomplete . The Condi-
tion register is dynamic and is updated immediately as the test status
changes . The Event Status registers provide similar information, however,
the information is latched in the Event register and cleared only when the
Event register is read . The Condition register also differs from the Event
register in that it does not generate SRQ interrupts when test status changes
. Refer to Figure 4-2 for Condition register configurations.

Example: STATUS:OPERATION:TEST:ISUMMARY3:CONDITION?
0

3-80 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST:ISUMMARY3

:ENABLE

Function: Set the Status Operation Test Isummary3 enable mask.

Syntax: ENAB[LE] <mask>

Range: (0 - 32767)

Remarks: While any combination of bit patterns may be set, only bits 8, 9 and 10 have
any significance . Setting bit 8 will cause bit 8 in the Event register to be
set when test "A" completes a Input test . Bit 9 provides a similar function
when a Output test completes . Bit 10 is associated with completion of a
Block test.

Example: STATUS:OPERATION:TEST:SUMMARY3:ENABLE 12

STATUS:OPERATION:TEST:ISUMMARY3

:ENABLE?

Function: Query the contents of the Status Operation Test Isummary3 enable mask.

Syntax: ENAB[LE]?

Response: 0 - 32767

Remarks: A query of this register will return the last value written to it . The query is
non-destructive.

Example: STATUS:OPERATION:ENABLE?
256:

IO50 / IO100 User's Manual 3-81

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST

:ISUMMARY4

Function: Provide access to the various test mode status bits for test "D" only.

Syntax: ISUM[MARY4]

Remarks: There are 4 basic test modes, Input, Output, Block and Memory Emulation .
The Memory Emulation test does not have a logical completion . Memory
Emulation test will only stop executing when ABORTed . The other test
modes do have logical completion, i.e . when the contents of the defined
vector memory have been sent or filled (output or input) . The
ISUMMARY branch to the STATUS:OPERATION:TEST command
allows an SRQ to be generated when the Input, Output or Block test has
reached its logical conclusion . There is a separate Event status register for
each test, A, B, C, and D . Each has its own enable as well . Status may be
checked, regardless of whether an SRQ was generated or not, to determine
test completion . The SRQ interrupt provides immediate notification of test
completion.

See Also: ISUMMARY1, ISUMMARY2, ISUMMARY3

3-82 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST:ISUMMARY4

:EVENT?

Function: Query the contents of the Operation Status Test Isummary4 Event register.

Syntax: [EVENT]?

Response: 256 | 512 | 1024

Remarks: Reading this register clears it . If the returned value is 0, then the test is not
complete . If the value is other than 0, then the bit position indicates which
test type is complete . Refer to Figure 4-1.

Example: STATUS:OPERATION:TEST:ISUMMARY4:EVENT?
256

See Also: ISUMMARY1, ISUMMARY2, ISUMMARY3

STATUS:OPERATION:TEST:ISUMMARY4

:CONDITION?

Function: Query the contents of the Operation Test Isummary4 Condition register.

Syntax: COND[ITION]?

Response: 0

Remarks: The Isummary4 Condition register returns the current status of test D . This
register will reflect whether test D is complete or incomplete . The Condi-
tion register is dynamic and is updated immediately as the test status
changes . The Event Status registers provide similar information, however,
the information is latched in the Event register and cleared only when the
Event register is read . The Condition register also differs from the Event
register in that it does not generate SRQ interrupts when test status changes
. Refer to Figure 4-2 for Condition register configurations.

Example: STATUS:OPERATION:TEST:ISUMMARY4:CONDITION?
0

IO50 / IO100 User's Manual 3-83

Rev. 02Interface Technology

Chapter 3: Command Set

STATUS:OPERATION:TEST:ISUMMARY4

:ENABLE

Function: Set the Status Operation Test Isummary4 enable mask.

Syntax: ENAB[LE] <mask>

Range: (0 - 32767)

Remarks: While any combination of bit patterns may be set, only bits 8, 9 and 10 have
any significance . Setting bit 8 will cause bit 8 in the Event register to be
set when test "A" completes a Input test . Bit 9 provides a similar function
when a Output test completes . Bit 10 is associated with completion of a
Block test.

Example: STATUS:OPERATION:TEST:ISUMMARY4:ENABLE 12

STATUS:OPERATION:TEST:ISUMMARY4

:ENABLE?

Function: Query the contents of the Status Operation enable mask.

Syntax: ENAB[LE]?

Response: 0 - 32767

Remarks: A query of this register will return the last value written to it . The query is
non-destructive.

Example: STATUS:OPERATION:ENABLE?
256

3-84 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

BASICMODE

Function: Used to perform simple input and output operations with a minimum of
programming effort.

Syntax: BASIC[MODE]

Remarks: This root command selects a simple set of branch commands for sending or
receiving data to devices which require no data flow control or external
control of output drivers . Basic formatting of data to output pins is pro-
vided . A Master/Slave configuration can be used to synchronize input or
output across multiple boards in a chassis.

BASICMODE

IO50 / IO100 User's Manual 3-85

Rev. 02Interface Technology

Chapter 3: Command Set

BASICMODE

:DEFINE

Function: Used to assign input or output function to data pins.

Syntax: DEF[INE]

Range: INPUT | OUTPUT

Default: None

Remarks: The data pins are internally configured for input or output in basic mode,
the external tristate control signals are ignored . Separate driver and re-
ceiver hardware is used for each set of 8 data pins, so input is always
available . If a pin is defined as input only, the output driver is disabled . If
a pin is defined as output, the output driver is forced on when the
BASIC:OUT command is executed . On board pullup resistors on the
IO50/IO100 will return all undriven signals to a high state . The output
drivers are implemented with byte wide devices, requiring all pins in an
octet to be identically configured for either input or output.

Example: BASICMODE:DEFINE:INPUT C25

See Also: BASICMODE

3-86 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

BASICMODE:DEFINE

:INPUT

Function: Defines data pin as input only.

Syntax: IN[PUT]

Range: A25,A17,A9,A1,B25,B17,B9,B1,C25,C17,C9,C1,D25,D17,D9,D1

Default: None

Remarks: Pins are defined as input or output in byte wide groups . The shorthand
notation for these groups in the command language is; A25 for pins A32-
A25, A17 for pins A24-A17, A9 for pins A16- A9, A1 for pins A8-A1, and
so forth for connectors B, C, and D . Attempting to define pin octets as
inputs, which have previously been defined as outputs, will generate an
error . The order in which the pins are listed in this Define command will
determine the order that input data is returned . In this definition pin list,
the most significant byte is assumed on the left, and least significant on the
right . When data is read in from this pin field using the INPUT? com-
mand, it will returned most significant byte first, least significant last .
Some minimal formatting of data, such as byte swapping, can be performed
by listing the input groups in non-sequential order in the pin list . The
amount of data returned will match the number of input only pins defined,
two hex characters for each octet . All 128 bits may be read simultaneously
. Each time a new DEFINE:INPUT command is executed, all previous
input pin definition is cleared . Input pins have an internal pullup resistor
on the IO50/IO100, and will be in a high state when not driven by the UUT.

Example: BASICMODE:DEFINE:INPUT C17,C25,C1,C9,B1,A1

See Also: BASICMODE

IO50 / IO100 User's Manual 3-87

Rev. 02Interface Technology

Chapter 3: Command Set

BASICMODE:DEFINE

:OUTPUT

Function: Defines data pin as output only.

Syntax: OUT[PUT]

Range: A25,A17,A9,A1,B25,B17,B9,B1,C25,C17,C9,C1,D25,D17,D9,D1

Default: None

Remarks: Pins are defined as input or output in byte wide groups . The shorthand
notation for these groups in the command language is; A25 for pins A32-
A25, A17 for pins A24-A17, A9 for pins A16- A9, A1 for pins A8-A1, and
so forth for connectors B,C, and D . Attempting to define pin octets as
outputs, which have previously been defined as inputs, will generate an
error . The order in which the pins are listed in this Define command will
determine the order that output data is apportioned . In this definition pin
list, the most significant byte is assumed on the left, and least significant on
the right . When data is sent for output using the OUTPUT command, the
first byte sent will be assigned to the most significant pin octet, the last byte
to the least significant . If data in the OUTPUT command is not sufficient
to fill the width of the defined output pin list, the most significant bits will
be zero filled . If data in excess of the output pin width is sent, the more
significant bits will be ignored . Some minimal formatting of data, such as
byte swapping, can be performed by listing the output groups in non-
sequential order in the pin list . Each time a new DEFINE:OUTPUT
command is executed, all previous output pin definition are cleared . If pins
that were previously outputs are cleared back to an undefined state, their
outputs will be disabled . On-board pullup resistors on the IO50/IO100 will
then return all undriven signals to a high state.

Example: BASICMODE:DEFINE:OUTPUT C17,C25,C1,C9,B1,A1

See Also: BASICMODE

3-88 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

BASICMODE

:CATALOG?

Function: Used to determine the current input and output pin assignments.

Syntax: CAT[ALOG]?

Response: IN followed by the input pin octet list ; OUT followed by the output pin
octet list.

Remarks: The shorthand notation for pin octets used in the
BASICMODE:DEFINITION :INPUT and :OUTPUT commands is used
here . If no pins are defined, the return string is IN ;OUT . Input or output
pin definition can be modified only by using the :DEFINE pin to overwrite
the existing configuration . All pin definition can be cleared with the
CLEAR command.

Example: BASICMODE:CATALOG?
IN,A25,A17,B1,C25;OUT,A1,B25,A9

See Also: BASICMODE:DEFINE, CLEAR

IO50 / IO100 User's Manual 3-89

Rev. 02Interface Technology

Chapter 3: Command Set

BASICMODE

BASICMODE

:CLEAR

Function: Removes all existing pin input and output configuration, returning all pins
to undefined.

Syntax: CLE[AR]

Remarks: Used to return all 128 data pins to an undefined state . This command will
disable all output drivers when executed . Any outputs which were driven
low will then be returned to a high state by on board pullup resistors on the
IO50/IO100 . Individual pin octets can be returned to undefined by execut-
ing BASICMODE:DEFINE commands which do not make reference to
those octets . The CLEAR command will not initialize data.

Example: BASICMODE:CLEAR

See Also: BASICMODE:DEFINE

BASICMODE

:INPUT?

Function: Used to read data from the UUT on the defined input pins.

Syntax: IN[PUT]?

Response: #h, followed by character string with two hexadecimal values for each pin
octet defined as input.

Remarks: All input data is latched simultaneously, whether 1 or 128 bits . Data is
returned in hexadecimal format, the most significant byte first and the least
significant last . No data inversion or masking is performed . The ordering
of bytes is determined in the BASICMODE:DEFINE:INPUT octet pin list .
The leftmost pin octet on the command line will be the most significant, the
rightmost will be least significant . The number of hexadecimal characters
returned will correspond to the number of pins defined as inputs.

Example: BASICMODE:INPUT?
#hDA1E

See Also: BASICMODE, BASICMODE:DEFINE:INPUT

3-90 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

BASICMODE

:OUTPUT

Function: Writes data to UUT on defined output pins .

Syntax: [OUT[PUT]]

Range: 0 to 32 hexadecimal characters.

Default: Zero

Remarks: The hexadecimal data provided is output on the pin octets listed in the
BASICMODE:DEFINE:OUTPUT command when this command is ex-
ecuted . No data inversion or masking is performed . The order in which
the pins are listed in the Define command will determine the order that
output data is apportioned . In the definition octet pin list, the most signifi-
cant byte is assumed on the left, and least significant on the right . When
data is sent using the OUTPUT command, the first byte sent will be as-
signed to the most significant pin octet, the last byte to the least significant .
If data in the OUTPUT command is not sufficient to fill the width of the
defined output pin list, the most significant bits will be zero filled . Sending
the command without any data will cause all outputs to be driven low . If
data in excess of the output pin width is sent, the more significant bits will
be ignored . Some minimal formatting of data, such as byte swapping, can
be performed by listing the output groups in non-sequential order in the pin
list.

Example: BASICMODE:OUTPUT F455ACD

See Also: BASICMODE, BASICMODE:DEFINE:OUTPUT

IO50 / IO100 User's Manual 3-91

Rev. 02Interface Technology

Chapter 3: Command Set

BASICMODE

:OUTPUT?

Function: Used to read data from the UUT on the defined output pins.

Syntax: OUT[PUT]?

Response: #h, followed by character string with two hexadecimal values for each pin
octet defined as output.

Remarks: Same operation as the BASICMODE:INPUT command, but reads data
from pins defined as outputs in BASICMODE:DEFINE command . Nor-
mally, this data will match the value last sent with the
BASICMODE;OUTPUT command . If the IO50/IO100 is attempting to
drive a shorted or grounded signal, the data written and read back will differ
. If all signals connected to the data pins of the IO50/IO100 are high imped-
ance (or open), this command can be used with the OUTPUT command to
perform wrap-around internal data path testing.

Example: BASICMODE:OUTPUT?
#h1234

See Also: BASICMODE, BASICMODE:INPUT, BASICMODE:OUTPUT,
BASICMODE:DEFINE:OUTPUT

3-92 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

BASICMODE

:MODE

Function: Selects optional configurations for synchronizing data input and output
across multiple IO50/IO100 boards.

Syntax: MODE

Range: SLAVE | MASTER | STANDALONE

Default: STANDALONE

Remarks: The VXI system architecture provides user selectable trigger signals for
synchronizing events across instruments within a chassis . The branch
commands of the MODE command are used to configure multiple IO50/
IO100 boards to use these signals for latching in, or clocking out data .
Normally, the IO50/IO100 operates in the Standalone mode, where data
input and output are controlled internally in response to the INPUT? and
OUTPUT commands . Boards in this mode ignore the VXI trigger signals .
If an IO50/IO100 is set to Master mode, it will send a VXI trigger signal
whenever it inputs or outputs data in response to the INPUT? and OUTPUT
commands . Boards set to Slave mode will input and output data under
control of the VXI trigger signals, not the INPUT? and OUTPUT com-
mands they execute.

To insure simultaneous data input and output on a Master board and all of
its Slaves, the following sequence rules must be observed . When perform-
ing input, the INPUT? command is sent to the Master board first (causing it
and all slaves to latch input pin data) . The INPUT? command can then be
sent to Slaves to read their data in turn . When performing output, the
OUTPUT command is sent to the Slave boards first (setting up all data in
the first stage of the output pipeline) . The OUTPUT? command can then
be sent to the Master, which will cause it, and all Slave boards, to open their
second stage pipeline latch and present data on the output pins.

Note that Master and Slave board sets must be configured to use the same
VXI trigger signals using the :GROUP command . Several sets of indepen-
dent Master/Slave groups can be configured by using the available VXI
trigger signal pairs . If other VXI devices use these signals, high level
software may have to allocate them at run time .

Example: BASICMODE:MODE:SLAVE:GROUP TTLT0

See Also: BASICMODE:MODE:SLAVE, BASICMODE:MODE:MASTER

BASICMODE

IO50 / IO100 User's Manual 3-93

Rev. 02Interface Technology

Chapter 3: Command Set

BASICMODE:MODE

:SLAVE

Function: Sets IO50/IO100 input/output control to VXI trigger operation.

Syntax: SLAV[E]

Range: See branch command

Default: None

Remarks: The Slave command will configure the IO50/IO100 board for external
control of its input and output latch strobe signals by VXI triggers . It also
provides a means of selecting one of four available pairs of VXI trigger
signals via its GROUP branch command . Once an IO50/IO100 has been
put in Slave mode, it will not be able to perform input or output without the
use of VXI trigger signals . A hardware or software reset, or a
MODE:STANDALONE command, will return it to normal operation.

Example: BASICMODE:MODE:SLAVE:GROUP TTLT2

See Also: BASICMODE:MODE

3-94 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

BASICMODE:MODE:SLAVE

:GROUP

Function: Selects VXI TTLTRG signal pair to receive

Syntax: [GROU[P]]

Range: TTLT0 | TTLT2 | TTLT4 | TTLT6

Default: None

Remarks: This command is optional, but may be used to improve test documentation .
The VXI trigger signals are allocated in pairs for synchronizing data flow
between Master/Slave boards within a chassis . One signal is used for data
input latching, one for data output . The shorthand notation for the signal
pairs is; TTLT0 for TTLTRG0 and TTLTRG1, TTLT2 for TTLTRG2 and
TTLTRG3, TTLT4 for TTLTRG4 and TTLTRG5, TTLT6 for TTLTRG6
and TTLTRG7 . The Slave board receives the signals from the Master
board (or any other VXI source), on the pair selected by this GROUP
command . The pair selected here must match the pair selected for output
on the Master board .

Example: BASIC:MODE:SLAVE:GROUP TTLT6

See Also: BASICMODE:MODE:SLAVE, BASICMODE:MODE:MASTER

BASICMODE:MODE

IO50 / IO100 User's Manual 3-95

Rev. 02Interface Technology

Chapter 3: Command Set

BASICMODE:MODE

:MASTER

Function: Sets IO50/IO100 to output VXI trigger signals whenever performing input
or output.

Syntax: MAST[ER]

Range: See branch command

Default: None

Remarks: The Master command will configure the IO50/IO100 to provide VXI trigger
signals for Slave boards . These signals will be generated whenever the
Master board opens its input or output data latch devices in response to
INPUT? or OUTPUT commands . The Master board operates normally in
all other respects . The branch command GROUP is used to select one of
four available pairs of VXI trigger signals to be driven . Once an IO50/
IO100 has been put in Master mode, it will continue to send VXI triggers
until a hardware or software reset, or receiving a MODE:STANDALONE.

Example: BASICMODE:MODE:MASTER:GROUP TTLT2

See Also: BASICMODE:MODE

BASICMODE:MASTER

3-96 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

BASICMODE:MODE:MASTER

:GROUP

Function: Selects VXI TTLTRG signal pair for output.

Syntax: [GROU[P]]

Range: TTLT0 | TTLT2 | TTLT4 | TTLT6

Default: None

Remarks: Provides the same function as :MODE:SLAVE:GROUP, except the signal
pair selected here will be driven by the Master IO50/IO100 for use by the
Slave board (or any other VXI device) . The pair selected here must match
the pair selected for input on the Slave board.

Example: BASIC:MODE:MASTER:GROUP TTLT6

See Also: BASICMODE:MODE, BASICMODE:MODE:SLAVE,
BASICMODE:MODE:MASTER

BASICMODE:MODE

:STANDALONE

Function: Sets IO50/IO100 to normal internal input/output control.

Syntax: STAN[DALONE]

Remarks: This is the normal operating mode of the IO50/IO100 after power up or
reset . Data input and output are controlled internally in response to IN-
PUT? and OUTPUT commands . This command would typically be used
only to return a board in Master or Standalone operation to normal.

Example: BASICMODE:MODE:STANDALONE

See Also: BASICMODE:MODE

IEEE 488.2

IO50 / IO100 User's Manual 3-97

Rev. 02Interface Technology

Chapter 3: Command Set

BASICMODE

:MODE?

Function: Used to read back the current operating mode of an IO50/IO100 board.

Syntax: MODE?

Response: MASTER | SLAVE | STANDALONE, TTL0 | TTL2 | TTL4 | TTL6

Remarks: Returns the current mode of operation for an IO50/IO100 board as a char-
acter string . The mode names correspond to those used in the MODE
command . If the mode is other than standalone, the VXI TTLTRG signal
selection is also returned.

Example: BASICMODE:MODE?
STANDALONE

See Also: BASICMODE:MODE:SLAVE, BASICMODE:MODE:MASTER

3-98 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

IEEE 488.2 MANDATORY COMMANDS
The IO50/IO100 support the mandatory commands set forth in the IEEE 488.2, 1987 specifica-
tion . The bulk of these commands utilize a four register set for passing operational information
to the system . These registers are the Standard Event Status Register, Standard Event Status
Enable Register, Status Byte Register and the Service Request Enable Register . Together,
these register allow certain conditions to generate a service request to the system Slot 0 Control-
ler, in much the same way that GPIB supports the Service Request (SRQ) function . Many of
the commands on the following pages make use of these four registers, so an understanding of
the working relationship of these registers is required . For this reason, a functional diagram of
the registers is shown in Figure 3-3 . It is also recommended that the user refer to the IEEE
488.2, 1987 manual for further information.

The Standard Event Status Enable register and Service Request Enable register are used to
enable potential interrupt events . The enable bits and the event bits are logically ANDed
together, and then logically ORed with all other enable/event pairs to produce a flag bit which is
fed into bit 5 (Event Status Byte) of the Status Byte Register . If the ESB bit is enabled, by
writing a 1 to bit 5 of the Status Request Enable register, then any enabled Standard Event will
generate an Service Request (SRQ) to the Slot 0 Controller.

The Standard Event interrupts supported by the IO50/IO100 are Query Error (bit 2), Device
Dependent Error (bit 3), Execution Error (bit 4) and Command Error (bit 5) . The Status Byte
interrupt supported are the Operation Event Status (bit 7), Event Status Byte (bit 5) and Mes-
sage Available (bit 4).

Some of the 488.2 mandatory commands have parameters associated with them . In all cases
the parameters may be entered in either decimal (default format), hexadecimal (#h prefix) or
binary (#b prefix) formats.

IO50 / IO100 User's Manual 3-99

Rev. 02Interface Technology

Chapter 3: Command Set

Figure 3-3.
IEEE 488.2 Register Configuration.

4 5 � � 6 � � �

7
7
7
7
7
7
7
7

4 5 � � 6 � � �

2�
'�

�
"��
,

7

7
7
7
7
7
7

2�
'�

�
"��
,

4 � � 6 � � �

� � ��+8

,98

*88

+8� *�% 9+8

:

8	�)�
	
,	/�	�
;	�	������

��
�
	�
��
��
��$
��
�8
��
��
��	
!

�
	
��,
	/
�	
�
���
$
��
�8
��
��
��	
!

�

�
�

��
!�
+�
��
�

+3
	

��
��
��
+�
��
�

�
)
�

	�
�
	�
	�
!�
��
�+
���
�

9
�	
�#
�+
���
�

,
	/
�	
�
��
��
���
"��
�$
��
�8
��
��
��	
!

�
�	
��
���
��
�
�
�"
	�
	�
��$
��
�8
��
��
��	
!

8���!��!�+)	��
8�����,	'��	�

<+8,=

.�� ���	������
8�����,	'��	�

�������9�	�	

9�	�	�$���+ ��#

8���!��!�+)	��
8�����+��0"	�,	'��	�

<+8+�>$,�?
<+8+=

8������#�	
,	'��	�
<8��=

8	�)�
	�,	/�	�
+��0"	�,	'��	�
<8,+�>$,�?
<8,+=

3-100 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

*CLS

Function: Clear Status Command.

Syntax: *CLS

Remarks: Clears all Event Registers in the status byte register . All queues, except the
output queue, in the status byte are emptied . The device is forced into the
operation complete command idle state and operation complete query idle
state.

Example: *CLS

*ESE

Function: Standard Event Status Enable Command.

Syntax: *ESE <number>

Range: 0 to 255

Default: 0

Remarks: A "1" in the bit position enables the corresponding bit of the standard event
status enable register . Refer to Figure 4-3 for the meaning of each bit.

Example: *ESE #b00000001
*ESE 255

IEEE 488.2

IO50 / IO100 User's Manual 3-101

Rev. 02Interface Technology

Chapter 3: Command Set

*ESE?

Function: Standard Event Status Enable Query.

Syntax: *ESE?

Response: decimal

Remarks: Returns an integer (0-255) which is the value of the standard event status
enable register . Refer to Figure 4-3 for the meaning of each bit.

Example: *ESE?
255

*ESR?

Function: Standard Event Status Register Query.

Syntax: *ESR?

Response: decimal

Remarks: Returns an integer (0-255) which is the value of the standard event status
register . Refer to Figure 4-3 for the meaning of each bit.

Example: *ESR?
32

3-102 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

*IDN?

Function: Identification Query.

Syntax: *IDN?

Response: INTERFACE TECHNOLOGY,IO50/IO100,0,REV (n)

Remarks: Returns the unique identification of the IO50/IO100, which is defined in
four fields separated by commas (Manufacturer, Model, Serial number.,
Firmware level) . The serial number field, which is not used, will always
default to 0 . The firmware level may be different than shown.

Example: *IDN?
INTERFACE TECHNOLOGY,IO100,0,1.0

*OPC

Function: Operation Complete.

Syntax: *OPC

Remarks: The IO50/IO100 has no application for the Operation Complete status and
overlap commands . Therefore, *OPC is parsed only; no operation is
performed.

Example: None

IO50 / IO100 User's Manual 3-103

Rev. 02Interface Technology

Chapter 3: Command Set

*OPC?

Function: Operation Complete Query.

Syntax: *OPC?

Response: None

Remarks: The IO50/IO100 has no application for the Operation Complete status and
overlap commands . Therefore, *OPC? is parsed only; no operation is
performed.

Example: None

*RCL

Function: Recall.

Syntax: *RCL

Remarks: The IO50/IO100 has no application for the Recall Setup command . There-
fore, *RCL is parsed only; no operation is performed . The LEARN com-
mand provides a function similar to the intended use of *RCL.

Example: None

3-104 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

*RST

Function: Reset.

Syntax: *RST

Remarks: Resets the IO50/IO100 to the power-up state (setting all parameters to their
default values) . Aborts all tests in progress.

Sets all parameters to their default values . Clears Errors . Does not change
IEEE 488.2 Registers.

Example: *RST

*SAV

Function: Save.

Syntax: *SAV <setup number>

Remarks: The IO50/IO100 has no application for the Save Setup command . There-
fore, *SAV is parsed only; no operation is performed . The LEARN?
command provides a function similar to the intended use of *SAV.

Example: None

IO50 / IO100 User's Manual 3-105

Rev. 02Interface Technology

Chapter 3: Command Set

*SRE

Function: Sets the bits of the Service Request Enable register.

Syntax: *SRE <number>

Default: 0

Remarks: This eight bit register is used to enable what event will cause generation of
a Service Request (SRQ) to the Slot 0 Controller . For example, if you
wanted to generate a SRQ when the output queue has a message available,
you would write a 16 to the SRE register . Refer to Figure 3-3 for the bit
definitions to this register.

Example: *SRE 16
*SRE #b00010000

*SRE?

Function: Service Request Enable Query.

Syntax: *SRE?

Response: decimal

Remarks: Returns an integer (0-255) which is the value of the Service Request Enable
register . Refer to Figure 3-3 for the bit definitions to this register.

Example: *SRE?
112

3-106 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

*STB?

Function: Read Status Byte Query.

Syntax: *STB?

Response: decimal

Remarks: Returns an integer (0-255) which is the value of the status byte register.

Example: *STB?
64

*TRG

Function: Trigger.

Syntax: *TRG

Remarks: The IO50/IO100 has no application for the Trigger command . Therefore,
*TRG is parsed only; no operation is performed.

Example: None

IO50 / IO100 User's Manual 3-107

Rev. 02Interface Technology

Chapter 3: Command Set

*TST?

Function: Self Test Query.

Syntax: *TST?

Response: error,message

Remarks: Forces the IO50/IO100 to reset state . All tests will be deleted . Sending
the *TST? command is like sending *RST.

Example: *TST?
0, "No Error"

*WAI

Function: Wait.

Syntax: *WAI

Remarks: The IO50/IO100 has no application for the Wait command . Therefore,
*WAI is parsed only; no operation is performed.

Example: None

3-108 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 3: Command Set

(THIS PAGE INTENTIONALLY LEFT BLANK)

IO50 / IO100 User's Manual 4-1

Rev. 02Interface Technology

Chapter 4: Register Access

����������������

Register Access

Register Based Operation The IO50/IO100 provides shared memory access to the Device Dependent
Registers for users wishing to implement special functions not provided
by the command set. These registers are the same ones accessed by the
local 68000 MPU when executing the high level word serial command
operations. To avoid conflicts with internal processor operation, only one
method of programming the IO50/IO100 should be used at a time.

The VXI Specification dictates that Device Dependent Registers are
addressed at the Base Address of the device Configuration Registers + 20
hexadecimal. This base address may be set by the Logical Address
Switch, or dynamically configured by the Slot 0 Resource Manager. Most
Slot 0 Controller software packages have some utility function for deter-
mining the base addresses of devices installed in the card rack.

The registers are byte, word, and longword addressable in the Motorola
data format. Intel based Slot 0 Controllers may have to perform byte
swapping operations for direct access to bytes and longwords. Write
operations to the data input and output registers can use longword access
freely. Longword write operations to the control registers are not recom-
mended, as the sequence of control may vary between Slot 0 Controller
vendors and language compilers.

Register based programming may offer significant data throughput
advantages for users with the required software development resources.

Refer to the Device Dependent Register bit map, Figure 4-1, for the
following register descriptions.

Data Input and Output Registers (0x20-2F Read/Write)

The bits in these registers correspond to the indicated data pin on the front
panel connectors. Data is passed without inversion. Input data is cap-
tured in byte wide latches which are enabled onto the data bus when the
addresses from 0x20 to 0x2F are read. Note that the read operation only
enables the latch outputs, the latch hold control (0x31), must be pulsed or
held open to pass data directly from the pins. Output data is output in two
stages, first to byte wide registers, and finally through output latches. The
first stage registers are loaded by write operations to addresses 0x20 to
0x2E. The output latches are used to allow all 128 bits to be output at the
same time, and their hold control (0x30) must be pulsed or held open to
output data directly to the pins.

Register Programming
Bit Definitions

4-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 4: Register Access

Figure 4-1.
Device Dependent Registers.

�� �+)	���#�	�@����A��B �!!��#�	�@���A��B

-,��+�(8 ,+���(8

"�0"

"�0/

"�01
"�02

"�04

"�0�

"�0�

�0

%��;�%�%
�
<���
��
�+��	=

�
%(

�
%(

%
%(

+
%(

�
%+

�
%+

%
%+

+
%+

	<<>
	<<>
	<<>
	<<>
	<<>
	<<>
	<<>
	<<>

�
�
�
�
	
	
+
+

;
;
;
;
;
;
;
;

��<�
��<�
��<�
��<�
��<�
��<�
��<�
��<�

0/�/�
�2�5
0/�/�
�2�5
0/�/�
�2�5
0/�/�
�2�5

�	<<>
	<<>
	<<>
	<<>
	<<>
	<<>
	<<>
	<<>

�
�
�
�
	
	
+
+

;
;
;
;
;
;
;
;

��<�
��<�
��<�
��<�
��<�
��<�
��<�
��<�

/1�/3
4��
/1��3
4��
/1��3
4��
/1��3
4��

"�/"
"�//
"�/1
"�/2
"�/4
"�/�
"�/	
�/

�<
�<
�<
�<
�<
�<
�<
�<

�<
�<
�<
�<
�<
�<
�<
�<

	<<>
	<<>
	<<>
	<<>
	<<>
	<<>
	<<>
	<<>

�
�
�
�
	
	
+
+

;
;
;
;
;
;
;
;

��<�
��<�
��<�
��<�
��<�
��<�
��<�
��<�

0/�/�
�2�5
0/�/�
�2�5
0/�/�
�2�5
0/�/�
�2�5

�	<<>
	<<>
	<<>
	<<>
	<<>
	<<>
	<<>
	<<>

�
�
�
�
	
	
+
+

;
;
;
;
;
;
;
;

��<�
��<�
��<�
��<�
��<�
��<�
��<�
��<�

/1�/3
4��
/1��3
4��
/1��3
4��
/1��3
4��

7%
7%
7%
7%
7%
7%
7%
7%

"�/"
"�//
"�/1
"�/2
"�/4
"�/�
"�/	
�/

7%
7%
7%
7%
7%
7%
7%
7%

�#$�&+$�2

-,��+�(8 ,+���(8

"�0"

"�0/

"�01
"�02

"�04

"�0�

"�0�

�0

�!�&+$�2

�8C�,(8�8C�-(8
��
)�

��
)�

��
)�

�%
)�

�%
)�

�+
)�

�+
)�

��
)�

��
)�

�%
)�

�%
)�

��
)�

��
)�

�+
)�

�+
)�

��
)�

�
*(

%
*(

+
*(

�
*(

�$
�,

�
�,

%
�,

+
�,

�
�,

�
*+

�
*+

%
*+

+
*+

�!
�,

�
�'

�
�'

%
�'

+
�'

�
"(

+
"(

�
"(

%
"(

$� ��
&�

�
&�

%
&�

+
&�

"+
�

"+
�

"+
%

"+
+

$� �
&�

%
&�

+
&�

�
&�

%��;�%�%
�7%�7%������%��	<%��

%��;�%�%
��<%
�<���
�%
�<���	<%��
$�
�

$�
�

$�
�

$�
�

$�
�

$�
�

�+$+��3��4���5��!"#$�&+$�2��"�!
�+$+���4���5�$(�66�(���)�$
�+$+���3��4���5��#$"#$�&+$�2��"�!
�+$+���4���5�$(�66�(���)�$
�+$+�	7�7�7��4���5�+,+�&0��!,�($
�+$+�
7�7�7��4�(��0��!,�($
�+$+��3��4��+$+�+�'���5��#$"#$�2�62
�+$+���3��4��+$+�,+&�����5��#$"#$�2�62
�+$+��3��4���5�+,+�&0��!$��!+%&����+$+���4���5��!,�2)
�+$+���3��4���5�(��0��$��!+%&����+$+����4���5��!,�2)
�+$+�
3��4��!8�&+$�2�)�&
�+$+���3��5��#$8�&+$�2�)�&
�+$+���3��5�)���%�&�9
%�$���+::��$)�"�!)��3��000��$����+::��$)�"�!)����3���
�+$+���3��4�)���%�&�9
%�$���+::��$)�"�!)��3��000%�$����+::��$)�"�!)����3���

$(�66�(��1��)�&0��)���%�&�9

����������	���	

��
������	���	

�����6���D��E�+��%��2��2+�A��
���������F�D��E�+�,+9�+8��A��

����������D���������$�A���

���A�2���(�����,+;G����
���A��,�;;+,��
���A��E�+�,+9G�(8
���A�8��,+

���A�2���(��$�,+;G����
���A��,�;;+,��
���A��E�+�,+9G�(8
���A�8��,+

�
�
�
�

��A�������8�(��H
��A�������8�+$��2+�
��A�+:�G���A�+$��2+�
��A�+:����A�+$��2+�

�:��A���2�,;���7��
�:��A���2�,;���7�6
�:��A���2�,;���7��
�:F�A���2�,;�5�7�4

�������2���(�8+2 �$����2���(�8+2
�,��8���+
�$�1+:�

���1��2
��$�,�2 �,�;;+,�����8+2

���A���2�,;���7��
���A���2�,;���7�6
���A���2�,;���7��
���A���2�,;�5�7�4

�,�;;+,��$�8+2

�� �+)	���#�	�@����A��B �!!��#�	�@���A��B

IO50 / IO100 User's Manual 4-3

Rev. 02Interface Technology

Chapter 4: Register Access

The Motorola byte addressing scheme is used, pin connection is defined
as LS Bit to lowest pin number, MS Bit to highest pin number within any
given byte. Data values are stored in this same configuration in the
Shared RAM area for use by the various defined test operations. Each
128 bit data vector is stored or read using the high level VECTOR com-
mand.

Control Registers

Output Latch and Trigger 2 Generation (0x30 Write) A one bit
written to the bits 0-3 of byte 0x30 (8-11 of word 0x30) will open the 32
bit wide output latch for connector A,B,C, or D as indicated. This will
allow data from the first stage data output registers (0x20-2F) to pass to
the output pins. When a zero is written to these bits, the current value in
the first stage data output registers is held on the output pins.

A one bit written to bit 4 of byte 0x30 (bit 12 of word 0x30) will cause a
low level on the higher numbered VXI TTLTRG signal of the two selected
in the Trigger Control register (0x3E) below. A zero in this position
causes the trigger level to be high (inactive).

A write to the output latch address will cause an acknowledge handshake
signal to transition low under certain conditions. See the Interrupt Mask
Control (0x36) register section below.

Input Latch and Trigger 1 Generation (0x31 Write). A one bit written
to the bits 0-3 of byte 0x31 (word 0x30) will open the 32 bit wide input
latch for connector A,B,C, or D as indicated. This will allow data from
the connector pins to pass through tristate latches enabled at addresses
0x20-2F. When a zero is written to these bits, the current value on the
data pins is held.

A one bit written to bit 4 of byte 31 (word 0x30) will cause a low level on
the lower numbered VXI TTLTRG signal of the two selected in the
Trigger Control register (0x3F) below. A zero in this position causes the
trigger level to be high (inactive).

A write to the input latch will cause an acknowledge handshake signal to
transition low under certain conditions. See the Interrupt Mask Control
(0x36) register section below.

Request Handshake Polarity Control (0x33 Write). A one bit written
to bits 0,2,4, or 6, of byte 0x33 (word 0x32) will invert the Data Available
input request handshake signal from the indicated. The interrupt logic
requires a low level on this signal to cause an interrupt. Request signals
from the UUT must be inverted if they indicate readiness for data transfer
by transition to a high level. A zero bit in these positions will allow the
request handshake to pass without inversion. The non-inverted polarity is

4-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 4: Register Access

required when UUT request handshake signal transitions low to indicate
that the UUT has data ready for input to the IO50/IO100.

Bits 1,3,5,7 perform the same function for the Byte Request output request
handshake signals. The UUT will cause these signals to transition when it
wants to receive another data value from the IO50/IO100.

Output Acknowledge Handshake Signal Control (0x34 Write). A one
bit written to bits 3-0 of byte 0x34 (bits 11-8 of word 0x34) will appear as
a high level output on the Data Valid acknowledge handshake signals. A
zero bit will cause a low level output. Exceptions to this operation occur
when using inverted acknowledge handshake operation. See the Interrupt
Mask Control (0x36) register section below.

The Data Valid handshake may be set true after a new value has been
passed to the connector pins by the IO50/IO100, to provide an input latch
strobe for the UUT.

Output Request Handshake Status (0x34 Read). A one bit read from
bits 3-0 of byte 0x34 (bits 11-8 of word 0x34) indicates a handshake
request has been received from the indicated connector. The value
appearing in this status register is inverted from the signal level being
input. Each one bit in this register can cause an interrupt, if enabled by
the Interrupt Mask register (0x36). The status read here is not affected by
interrupt mask bit settings. The bits here are not latched, but follow the
level of the request input signal.

When operating with normal acknowledge handshake polarity, the status
bits will be one under two conditions; 1. When the UUT has requested
output and the IO50/IO100 has not set the Data Valid acknowledge
handshake true (high), 2. When the IO50/IO100 has set Data Valid high
and the UUT has removed the requesting handshake.

When operating with inverted acknowledge handshake polarity, the status
bit is high whenever the UUT has set the request handshake line to its
active state.

Input Acknowledge Handshake Signal Control (0x35 Write). A one
bit written to bits 3-0 of byte 0x34 (bits 11-8 of word 0x34) will appear as
a high level output on the Data Acknowledge handshake signals. A zero
bit will cause a low level output. Exceptions to this operation occur when
using inverted acknowledge handshake operation. See the Interrupt Mask
Control (0x36) register section below.

The Data Acknowledge handshake may be set true after a new value has
been latched from the connector pins by the IO50/IO100 to provide an
UUT output clock to change to the next data value.

IO50 / IO100 User's Manual 4-5

Rev. 02Interface Technology

Chapter 4: Register Access

Output Interrupt Mask and Inverted Acknowledge Control (0x36
Write). Writing a one bit to bits 3-0 of byte 0x36 (bits 11-8 of word
0x36) will enable the Byte Request handshake signal to generate a local
interrupt to the 68000 MPU. The STATUS commands can be used to
program the 68000 MPU to pass the local interrupt on to the Slot 0
Controller. A zero bit will inhibit interrupts from the indicated connector
signal. In normal operation, only one connector request signal will be
enabled at a time.

A one bit at bit 4 of byte 0x36 (bit 12 of word 0x36) will enable the
Inverted Output Acknowledge handshake mode of operation. This is used
to provide an open collector type acknowledge handshake signal. This is
accomplished by controlling the Data Valid acknowledge signal output
driver tristate enable. When the inverted mode of operation is selected,
the driver output is initially turned off. Writing to the Output Latch
control register (0x30) with a given Data Valid handshake bit (0x34) low,
and the Interrupt Mask control bit high (in the matching bit position), will
enable the output driver. At that time, the connector handshake signals
with 0 bit values in the Output Acknowledge register (0x34) will go from
pulled-up to low. The acknowledge handshake output driver will go back
to high impedance output as soon as the UUT makes the Byte Request
handshake signal inactive. If a local output type interrupt is pending, it is
disabled when the acknowledge output driver is enabled.

Input Interrupt Mask and Inverted Acknowledge Control (0x37
Write), Writing a one bit to bits 3-0 of byte 0x37 (word 0x36) will enable
the Byte Available handshake signal to generate a local interrupt to the
68000 MPU. The STATUS commands can be used to program the 68000
MPU to pass the local interrupt on to the Slot 0 Controller. A zero bit will
inhibit interrupts from the indicated connector signal. In normal opera-
tion, only one connector request signal will be enabled at a time.

A one bit at bit 4 of byte 0x36 (bit 12 of word 0x36) will enable the
Inverted Input Acknowledge handshake mode of operation. This is used
to provide an open collector type acknowledge handshake signal. This is
accomplished by controlling the Data Acknowledge signal output driver
tristate enable. When the inverted mode of operation is selected, the
driver output is initially turned off. Writing to the Input Latch control
register (0x31) with a given Data Acknowledge (0x35) handshake bit low,
and the Interrupt Mask control bit high (in the matching bit position), will
enable the output driver. At that time, the connector handshake signals
with 0 bit values in the Data Acknowledge register (0x35) will go from
pulled-up to low. The acknowledge handshake output driver will go back
to high impedance output as soon as the UUT makes the Byte Available
handshake signal inactive. If a local input type interrupt is pending, it is
disabled when the acknowledge output driver is enabled.

4-6 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 4: Register Access

Output Latch Strobe Select Control (0x38 Write). There are four pairs of bits in this control register, one
pair for each connector. The function selected will determine when the output latch opens to pass the data
from the first stage register to the connector pins. There are four possible functions selected by the two bits,
decoded as follows;

0 = Latch strobe controlled by Output Latch Control register. 1 = Latch strobe controlled by VXI TTLTRG2
signal. 2 = Latch strobe controlled by Byte Request handshake. 3 = Latch forced open.

The normal mode of operation uses decode 0. When one IO50/IO100 is slaved to another, decode 1 is used.
The remaining two may meet specific user requirements.

Bits 7 and 6 in byte 0x38 (bits 15 and 14 in word 0x38) will control the 32 bit latch for connector D. The
other bit pairs, in descending order, control the C, B, and A connector latches.

Input Latch Strobe Select Control (0x39 Write). There are four pairs of bits in this control register, one
pair for each connector. The function selected will determine when the input latch opens to pass the data
from the connector pins into the internal data bus. There are four possible functions selected by the two bits,
decoded as follows;

0 = Latch strobe controlled by Input Latch Control register. 1 = Latch strobe controlled by VXI TTLTRG1
signal. 2 = Latch strobe controlled by Byte Available handshake. 3 = Latch forced open. The normal mode
of operation uses decode 0. When one IO50/IO100 is slaved to another, decode 1 is used. The remaining two
may meet specific user requirements. Bits 7 and 6 in byte 0x39 (word 0x38) will control the 32 bit latch for
connector D. The other bit pairs, in descending order, control the C, B, and A connector latches.

Tristate Polarity (0x3A Write) and Output Control (0x3C Write). The bits in these two registers control
the output pin tristate drivers on a byte wide basis. One pair of bits is provided for each of the 16 bytes. The
control function is encoded as follows:

Int/Ext Control
Bit (0x3C)

Enable/Polarity
Bit (0x3A) Function

0 0 Outputs tristated (pulled up)

0 1 Outputs enabled

1 0 External control (0 = enabled; 1 = tristate)

1 1 External control (0 = tristate; 1 = enable)

Table 4-1.
Tristate Polarity and Output Control Encoding.

IO50 / IO100 User's Manual 4-7

Rev. 02Interface Technology

Chapter 4: Register Access

The control is initialized to decode 0 on power up so that all output pin
drivers are at high impedance.

Tristate Enable Readback (0x3C Read). Bits read back from this
address indicate the state of the tristate enables for the output pin drivers.
Bits which are read as low indicate that the driver for the corresponding
byte is enabled. Bits which are read high indicate a disabled driver.
These bits are read from the actual device enable signals, and reflect all
external and internal control inputs.

The bit positions correspond to the connector bytes in the same way
shown above under Tristate Polarity and Output Control.

Trigger Input/Output Select (0x3F Write). The bits in this register are
used to select among the VXI TTLTRG signals for input and output
functions. The IO50/IO100 is capable of generating two independent
output trigger signals and receiving two independent signals from another
VXI device. The two separate trigger signals allow control of input and
output operations independently. Trigger generation is performed by a
“master” IO50/IO100 card to control data flow on a “slave” board. Trig-
ger reception is used on a slave board to open and close data latches.
Trigger signals to be received are selected by bits 5 and 4 of byte 0x3F
(word 0x3E) as follows:

The bit control is apportioned to the connector pins as follows:

Table 4-2.
Tristate Polarity and Output Control Encoding.

Bit
Connector

Pins Bit Connector Pins

0 A8-1 4 B8-1

1 A16-9 5 B16-9

2 A24-17 6 B24-17

3 A32-25 7 B32-25

Bit
Connector

Pins Bit Connector Pins

8 C8-1 12 D8-1

9 C16-9 13 D16-9

10 C24-17 14 D24-17

11 C32-25 15 D32-25

Note
Grayed items apply
to I/O100 series
only. Not used with
I/O 50 series.

4-8 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 4: Register Access

Bit 5 Bit 4 Receive Trigger Pair

0 0 TTLTRG0 for input, TTLTRG1 for output

0 1 TTLTRG2 for input, TTLTRG3 for output

1 0 TTLTRG4 for input, TTLTRG5 for output

1 1 TTLTRG6 for input, TTLTRG7 for output

Bit 3210 Send Trigger Pair

0000 None

0001 TTLTRG0 for input, TTLTRG1 for output

0010 TTLTRG2 for input, TTLTRG3 for output

0100 TTLTRG4 for input, TTLTRG5 for output

1000 TTLTRG6 for input, TTLTRG7 for output

Table 4-3.
Receive Trigger Pairs.

Table 4-4.
Send Trigger Pairs.

Trigger signals are output on lines selected as follows:

The initial state of the output circuit on power up is 0000.

IO50 / IO100 User's Manual 5-1

Rev. 02Interface Technology

Chapter 5: Applications

���������������

Applications

Memory Emulation The ROM and RAM Emulation Connection figures (Figs 5-1 and 5-2)
show ways of providing limited support hardware on the UUT to facilitate
a data bus type interface to the IO50/IO100. If address and data signals
are already available at a UUT connector, the few remaining signals could
be provided on a small connector, or any remaining spare pins. Using a
connector harness which plugs into an actual memory device socket is
also possible, but will usually not be rugged enough for the test environ-
ment. The configuration shown requires an open collector type of ac-
knowledge signal, and assumes a pullup resistor is provided on the UUT.
The IO50/IO100 does provide a 10K pullup resistor on each acknowledge
signal which will be in parallel with the UUT pullup device. To satisfy
signal rise time requirements, UUT pullups of 1K or less are often used.

The test cable should include paired ground wire connections on all
handshake and tristate control signals used to minimize crosstalk. If
ribbon cable is used, extra ground pins on the UUT test connector may
ease cable assembly.

Many microprocessor architectures provide an access strobe/acknowledge
transfer type of handshake to memory devices. An access error timer is
often used to indicate a non-existent memory or bus error condition is the
strobe remains on too long without an acknowledge. To avoid timeout
conditions when emulating ROM operation, this timer duration should be
set to 300 us or more. This value could be constant, or made shorter
during non-test operation, if system performance might suffer. For RAM
emulation, separate read and write strobes are required. If the MPU
architecture on the UUT uses a single read/write line, the decoding logic
shown will be required. The logic shown is meant to be symbolic, and
can be implemented in other device types, or with programmable logic.

For the examples shown in the figure, the active test operation is Memory
Emulation. This operation has an inverted acknowledge handshake strobe
(negative true), with an open collector type characteristic. The request
handshake signals may be either normal (low for request) or inverted
(high for request) for Memory Emulation. This figure shows normal
polarity request signals being generated by the UUT. It also shows
normal tristate control polarity (low enabled).

5-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 5: Applications

ROM Emulation

(See Fig 5-1) The following program example shows the commands required to emulate a EPROM used to
provide 16 bit data. Only 16 locations of the EPROM are used, to provide a simple boot up and jump to self
operation. The user would connect the lower 4 address bits to the I/O pins defined as ROM_ADDR, and the
data pins to ROM_DATA. These pins can be located on any connector, and in non-sequential order. The
field definition commands can shuffle the pins connected to any desired order to correct for cabling changes.
Note that the address field definition will assign significance to the pins in the order listed. The most signifi-
cant address bit will be the leftmost listed in the field pin assignment string. The least significant bit will be
the rightmost pin in the string. Note also that vectors are numbered with decimal values starting at 1 not 0.
This difference will cause the test vector number to be one higher than the ROM address as seen by the UUT.

{Setup}

TEST:DEF A:MEMEMULATION:SIZE 16 ;Define and reserve memory
FIELD:DEF ROM_ADDR:PIN A1,A2,A4,A3 ;Define address field on A
FIELD:NAME ROM_ADDR:TRIST INPUT ;Make input only field
FIELD:DEF ROM_DATA:PINS B16-1 ;Define data field on B
FIELD:NAME ROM_DATA:TRIST EXTNORM ;Data field tristate control
SYST:FIELD ROM_DATA ;Change active field to data
VECTOR 1:COUNT 8;DATA 0000,0008,0000,0010,4E71,4E71,4E71,4E71
VECTOR 9:COUNT 8;DATA 4E71,4E71,4E71,4E71,4E71,4E71,4E71,4E7E

;Data in “ROM” address 0-F

{Specify address for Memory Emulation}

TEST:ADDR ROM_ADDR ;Declare field to use for address

{Start test}

INITIALIZE:BLOCK ;Now UUT controls flow

{Check operation status}

TEST:NAME ALL:STATUS? ;Check last vector addressed

{Returns Test letter, EXECUTING status, Number of last vector read}

{End test}

ABORT

{Delete all tests before continuing to next}

TEST:NAME ALL:DEL

IO50 / IO100 User's Manual 5-3

Rev. 02Interface Technology

Chapter 5: Applications

Figure 5-1.
R0M Emulation Example.

�%

,	 �)	�I� �	��.����	�

�!!�	
�	
�!	

*��

���C�

�,�*�+��0"	

,�*��
&���"	!'	

�%

�������!

�������!

�!!�	

����

8���0	
,�*+$� �����%�"�!

�#�	�,	/�	�
+3�	���"�������	

�!!�	����

��������

�	��
����	
���

�	�
��0"	

����1�����
����	
���

���

�6
��

3�

33

33

;����!;����!
��
�5
33

���+88
��*+,

6�����*��G

8���0	

�!!�	

����

@�����%�"�!B
��C�

,�*+$�
@�#�	�,	/�	�B

+3�G�������	

�����	���

	�2�'�

5-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 5: Applications

RAM Emulation

(See Fig 5-2) The following program example shows the commands required to emulate a 32-word by 16-bit
RAM used for stack and scratchpad operation by the UUT. The UUT memory map normally uses high RAM
for stack storage, and low RAM for scratchpad. The emulation operation will provide 16 bytes starting at
address 0x0000 and 16 bytes starting at address 0x8000. The memory split is performed by assignment of
UUT address bit 15 to address bit 4 position in the address field. The RAM is initialized with 0 in the stack
area and an 0xFF pattern in the scratchpad area. One scratchpad location is changed while the test is running
to cause an action by the UUT firmware. This action will modify the stack area, which may be examined
while the test executes.

{Setup}

TEST:DEF D:MEMEMULATION:SIZE 32 ;Define and reserve memory
FIELD:DEF RAM_ADDR:PIN A15,A4-1 ;Define address field on A
FIELD:NAME RAM_ADDR:TRIST INPUT ;Make input only field
FIELD:DEF RAM_DATA:PINS B8-1 ;Define data field on B
FIELD:NAME RAM_DATA:TRIST EXTNORM ;Data field tristate control
VECTOR 1:COUNT 8;DATA:FIELD RAM_DATA;VALUE FF,FF,FF,FF,FF,FF,FF,FF
VECTOR 9:COUNT 8;DATA:FIELD RAM_DATA;VALUE FF,FF,FF,FF,FF,FF,FF,FF

;Data in scratchpad address 0-F
VECTOR 17:COUNT 8;DATA:FIELD RAM_DATA;VALUE 00,00,00,00,00,00,00,00
VECTOR 25:COUNT 8;DATA:FIELD RAM_DATA;VALUE 00,00,00,00,00,00,00,00

;Data in stack address 10-1F

{Specify address for Memory Emulation}

TEST:ADDR RAM_ADDR ;Declare field to use for address

{Start test}

INITIALIZE:BLOCK ;Now UUT controls flow

{Check operation status}

TEST:NAME ALL:STATUS? ;Check last vector addressed

{Returns Test letter, EXECUTING status, Number of last vector read}

{Change scratchpad location 0xF}

SYST:FIELD RAM_DATA ;Select data as active field
VECTOR 16:DATA 55 ;Write flag to scratchpad

{Check for UUT change of stack location 0}

IO50 / IO100 User's Manual 5-5

Rev. 02Interface Technology

Chapter 5: Applications

Figure 5-2.
RAM Emulation Example.

�%

,	 �)	�I� �	��.����	�

�!!�	
�	
�!	

*��

���C�

�,�*�+��0"	

,�*��
&���"	!'	

�%

�������!

�������!

�!!�	

����

8���0	

,�*+$�

�����%�"�!

�#�	�,	/�	�

+3�	���"�������	

��������

��������

�	��
����	
���

�	�
��0"	

�����%:�
����	
���

���

�6

��

3�

33

33

;����!
��

���+88
��*+,

6�����*��G

-���	�

�#�	��)��"�0"	

������
&���"	!'	�4
-,+$�

,�+$�

��

;����!

�5

33

��

�F

8���0	

-���	�

�!!�	

����

@�����%�"�!B

��C�

,�+$�
@�#�	�,	/�	��B

+3�G�������	

@������
&���"	!'	B

-,+$�
@�#�	��)��"�0"	�B

�����	���

	�2�'�

IO50 / IO100
Connector

5-6 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 5: Applications

VECTOR 17:COUNT ALL;DATA:VAL?

{Returns 16 byte hex value stored at UUT address 0x8000-800F}

{End test}

ABORT

{Delete all tests before continuing to next}

TEST:NAME ALL:DEL

ROM Emulation with Programmed I/O

The ability to force a UUT MPU to execute instruction test loops while examining output
and input signals can be a valuable test aid. The ROM Emulation, once started, will run
until an ABORT command is issued while it is the active test. The Programmed I/O
Timed test can be used during ROM emulation (without handshake signals) to force input
signals or examine outputs.

This example shows a test loop that causes the UUT MPU to perform a simple power up
reset sequence, then write a pattern to a peripheral port. After writing to this location, the
MPU will enter and endless wait loop. The Programmed I/O test can then read in and
verify the pattern latched in the peripheral port.

{Setup}

TEST:DEF A:MEMEMULATION:SIZE 16 ;Define and reserve memory
FIELD:DEF ROM_ADDR:PIN A1,A2,A4,A3 ;Define address field on A
FIELD:NAME ROM_ADDR:TRIST INPUT ;Make input only field
FIELD:DEF ROM_DATA:PINS B16-1 ;Define data field on B
FIELD:NAME ROM_DATA:TRIST EXTNORM ;Data field tristate control
SYST:FIELD ROM_DATA ;Change active field to data
VECTOR 1:COUNT 8;DATA 0000,0008,0000,0010,80FA,0010,CC00,0000
VECTOR 9:COUNT 8;DATA A5A5,4E71,4E71,4E71,4E71,4E71,4E71,4E7E

;Data in “ROM” address 0-F

{Specify address for Memory Emulation}

TEST:ADDR ROM_ADDR ;Declare field to use for address
TEST:DEF B:PRGIOT ;Define another test on B
SYST:TEST B ;Make it the active test

IO50 / IO100 User's Manual 5-7

Rev. 02Interface Technology

Chapter 5: Applications

FIELD:DEF PORT_DAT:PIN B32-25 ;Define field to read port
FIELD:NAME PORT_DAT:TRISTINPUT ;Tristate input
SYST:TEST A ;Active test to start

{Start test}

INITIALIZE:BLOCK ;Now ROM Emulation starts
SYST:TEST B
INIT:IN ;Read from UUT port latch
VECT 1:DATA:FIELD PORT_DAT;VAL? ;Get data to verify

{Returns eight bit value read in from pins}

ABORT ;Halt Programmed I/O test
SYST:TEST A ABORT ;Halt ROM Emulation test

{End test}

Techniques for Clocking With Data Pins

The IO50/IO100 is a general purpose digital interface for low to medium speed devices. The
data signals are single ended and are carried on ribbon cable type connectors, making them
susceptible to crosstalk. When adjacent signals switch, static data signals may “glitch” across
logic levels for tens of nanoseconds. The handshake signals provided on each connector have
paired grounds and are positioned to minimize crosstalk. These signals should be used when-
ever clocking fast logic devices, but many users have requirements for other clock signals. Data
pins may be used in these cases if the following guidelines are used. Two data pins on each
side of the clock data pin, and within the same octet, should be configured as output only and
left at a low level. Performance may be improved by replacing the standard pullup resistor pack
on the IO50/IO100 with a pullup/pulldown type, replacing the series termination resistor pack
with a shorting pack, and using a matching termination at the signal destination on the UUT.
An open collector driver device may be used with this type of transmission line termination to
provide increased sink current.

Output and Input Testing of Memory Devices

(See Fig 5-3). The timed block output test can be used to fill memory devices with a data
pattern, then programmed I/O can read back and verify correct storage. The throughput rate
may not be sufficient for large memory arrays, but small devices, or blocks of large devices, can
be tested in a reasonable time. A simple walking one pattern is used in this example. The UUT
memory must be filled from low to high, then read back in the same order. In this fashion, any
shorted address lines will be exposed by locations containing a higher value than expected. If
larger memory devices are to be tested, the Slot 0 Controller could fill the shared RAM area
with the pattern for block output. This would decrease test time by eliminating all the data
vector commands.

5-8 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 5: Applications

Data is first written using the Block Output Timed test with an inverted handshake to match the
UUT write strobe requirement. The inverted acknowledge handshake has an open collector
output characteristic. The timeout value of the block output test can be increased to provide a
longer write pulse if required.

Data is read using the Programmed I/O Timed test with an inverted strobe to match the UUT
output enable requirements. This test must be run under the name of a different connector than
the Block Output. This is necessary because the Data Valid output handshake signal from the
first connector is connected to the memory write line. This line must not move when the ad-
dress is output during the readback operation, so another connector control group is used. The
Data Valid handshake signal of this second group remains unconnected. Note that both tests
use the same data pins, even though they are in different connector control groups.

The data comparison and verification is performed on the Slot 0 Controller after read back.

{Setup}

TEST:DEF A:BLKOUTH:SIZE 16 ;Define test for fill
FIELD:DEF ADDR:PIN A16-1 ;Memory address field
FIELD:DEF DATA:PIN A32-17 ;Memory data field
FIELD:NAME ADDR:TRIST OUT ;Address outputs on
FIELD:NAME DATA:TRIST OUT ;Data outputs on for write
VECT 1:DATA:FIELD ADDR;VAL 0;FIELD DATA;VAL 1 ;Walking 1 data
VECT 2:DATA:FIELD ADDR;VAL 1;FIELD DATA;VAL 2
VECT 3:DATA:FIELD ADDR;VAL 2;FIELD DATA;VAL 4
VECT 4:DATA:FIELD ADDR;VAL 3;FIELD DATA;VAL 8
VECT 5:DATA:FIELD ADDR;VAL 4;FIELD DATA;VAL 10
VECT 6:DATA:FIELD ADDR;VAL 5;FIELD DATA;VAL 20
VECT 7:DATA:FIELD ADDR;VAL 6;FIELD DATA;VAL 40
VECT 8:DATA:FIELD ADDR;VAL 7;FIELD DATA;VAL 80
VECT 9:DATA:FIELD ADDR;VAL 8;FIELD DATA;VAL 100
VECT 10:DATA:FIELD ADDR;VAL 9;FIELD DATA;VAL 200
VECT 11:DATA:FIELD ADDR;VAL A;FIELD DATA;VAL 400
VECT 12:DATA:FIELD ADDR;VAL B;FIELD DATA;VAL 800
VECT 13:DATA:FIELD ADDR;VAL C;FIELD DATA;VAL 1000
VECT 14:DATA:FIELD ADDR;VAL D;FIELD DATA;VAL 2000
VECT 15:DATA:FIELD ADDR;VAL E;FIELD DATA;VAL 4000
VECT 16:DATA:FIELD ADDR;VAL F;FIELD DATA;VAL 8000

{Start test}

INIT:BLOCK

IO50 / IO100 User's Manual 5-9

Rev. 02Interface Technology

Chapter 5: Applications

{Check for test completion}

TEST:NAME ALL:STATUS?

{Returns Stopped when done filling memory}

ABORT ;Stop when done
FIELD:NAME DATA:TRIST CLEAR ;Free data pins for input
TEST:DEF B:PRGIOT ;Verify test on conn. B
SYST:TEST B ;Make active test for field def’s.
FIELD:DEF ADDR:PIN A16-1 ;Address field same as fill
FIELD:DEF DATA:PIN A32-17 ;Data field same as fill
FIELD:NAME ADDR:TRIST OUT ;Address out as before, no con-
flict
FIELD:NAME DATA:TRIST IN ;Data pins are now inputs
VECT 1:DATA:FIELD ADDR;VAL 0 ;Set address out for readback
INIT:OUT ;Output address for setup
INIT:IN ;Read in data
VECT 1:DATA:FIELD DATA;VAL ? ;Return data to Slot 0

{Slot 0 verifies returned data with expected data}

VECT 1:DATA:FIELD ADDR;VAL 1 ;Repeat for 16 bit walking one
INIT:OUT INIT:IN VECT 1:DATA:FIELD DATA;VAL?
VECT 1:DATA:FIELD ADDR;VAL 2 INIT:OUT INIT:IN VECT
1:DATA:FIELD:DATA;VAL?

{Continues for remaining pattern values}

ABORT TEST:NAME ALL:DEL

Testing Memory Mapped I/O Control Logic

(See Fig 5-4). Many UUT devices that are normally controlled by a microprocessor elsewhere
in the system, require a control sequence to enable their functional operation for testing. The
IO50/IO100 can provide the address, data, and strobe sequences required to set, and read back,
UUT control registers and status ports.

In this example, read and write address decoders on the UUT are strobed by the IO50/IO100
while data is provided or read through the normal UUT microprocessor path. The Programmed
I/O Timed operation is used with normal (non-inverted) handshake as might be used by a
dedicated microcontroller. The data bus is a tristate interface with data flow controlled by the

5-10 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 5: Applications

Figure 5-3.
Memory Array Test Example.

��

+���

+������$&�

+�����&��

+�����&��

%����
	'���-�'!

%���
	�.$�

��""���
	'���-�'!�

77%

1�

##

##

77%�%�����--�����',&-

�!&��;

+���

���!���

���!���
+�-'��

��;���

��.$�

	�& �
��.$�

?�6'!�

�!!��

���!���

+���

�!&��;

����;

12

14

13

@!'��� @!'���

@!'���

�-��'9$��,�

	'��>��

	'��>��

��!'.�

��

<'!6�$�
��.$�;

?�6'!���!!���%���&�,

��!'.�

���!���

+���

�!&��;
+������$&�

����;
+�����-�>

��$&�

��$&�

��$&�

��$&�

IO50 / IO100
Connectors

IO50 / IO100 User's Manual 5-11

Rev. 02Interface Technology

Chapter 5: Applications

IO50/IO100. Instead of reprogramming the internal data pin tristate control for each change
from write to read, the external tristate controls are used in a feed back fashion to switch data
direction.

The test will set control patterns in registers 1 and 2 first, then read status ports 1 and 2 to
determine correct operation. The read back operation must be performed on a different connec-
tor from the write operation, for the same reason given in the Memory I/O Test example above.

{Setup}

TEST:DEF C:PRGIOT ; Define write test
FIELD:DEF CTL_ADDR:PIN B32,B2,B1 ;Define address field
FIELD:DEF CTL_DATA:PIN B15-8 ;Define data field
FIELD:NAME CTL_ADDR:TRIST OUT ;Address field outputs on
FIELD:NAME CTL_DATA:TRIST EXTNORM ;Data field outputs on

{Send control data pattern to first register}

VECT 1:DATA:FIELD CTL_ADDR;VAL 0;FIELD CTL_DATA;VAL 4C
INIT:OUT

{Send control data pattern to second register}

VECT 1:DATA:FIELD CTL_ADDR;VAL 1;FIELD CTL_DATA;VAL 22
INIT:OUT
ABORT

{Now verify status resulting from control outputs}

TEST:DEF B:PRGIOT ;Define read test
SYST:TEST B ;Make it the active test
FIELD:DEF CTL_ADDR:PIN B32,B2,B1 ;Same field as write
FIELD:DEF CTL_DATA:PIN B15-8 ;Same field as write
FIELD:NAME CTL_ADDR:TRIST OUT
FIELD:NAME CTL_DATA:TRIST EXTNORM
SYST:FIELD CTL_DATA ;Change active field for all reads
VECT 1:DATA:FIELD CTL_ADDR;VAL 3 ;Set read address
INIT:IN ;Read in status
VECT 1:DATA:VAL? ;Return to Slot 0

5-12 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 5: Applications

Figure 5-4.
Memory Mapped Control Test Example.

+���

+������$&�

+�����&��

+�����&��

%����
	'���-�'!

%���
	�.$�

��""���
	'���-�'!�

77%

1�

##

77%�%�����--�����',&-

���!���

+���

�!&��

����

14

12

13

@!'���

@!'���

�-��'9$��,�

	'��>�	

	'��>��

?�6'!��?� ���	'��!'$�%���&�,

���!���

+���

�!&��
+������$&�

����
+�����-�>

���!���

+�-'��

�!&��

���!���

+�-'��

����

��.$�

	$'-�

	$'-�

��.$�

	'��!'$
��,>��

	'��!'$
��,>�/

������
�'!���

������
�'!��/

��

��

#��!��$
%!&����� �5

�4;
��

��$&�

��$&�

��$&�

��$&�

#��!��$
%!&�����

	'��>�	

	'��>��

IO50 / IO100 User's Manual 5-13

Rev. 02Interface Technology

Chapter 5: Applications

{Slot 0 verifies first status result}

VECT 1:DATA:FIELD CTL_ADDR;VAL 4 ;Next read address
INIT:IN VECT 1:DATA:VAL?

{Slot 0 verifies second status result}

ABORT TEST:NAME ALL:DEL

Counter or FIFO Testing

See Fig 5-5. A UUT device which outputs changing data in response to a strobe input can be
tested with the Block Input Timed test. The example below shows data read back using the
VECTOR commands. The UUT output data could be read directly from the shared memory
locations for minimum test times. In this case a TEST:NAME ALL:CAT? command would be
used to determine the start address of the shared memory vector area.

This example shows an 12 bit counter chain tested with an inverted handshake output. The
counter increments on the rising clock edge, so the first state read should be 0. The timeout
value of the block input test may be increased to allow for longer counter propagation delays.

A single data bit is used to reset the counter before testing. This pin is used with adjacent
guard pins as recommended in the application section on clocking with data pins. The reset is
a low true signal. The reset signal is output in another connector control group so that it will
remain static during the block test operation.

{Setup}

TEST:DEF B:PRGIOT ;Define reset test
FIELD:DEF RESET:PIN A2 ;Define reset pin
FIELD:DEF GUARD:PIN A4,A3,A1 ;Define constant level pins
FIELD:NAME RESET:TRIST OUT ;Turn on reset pin
FIELD:NAME GUARD:TRIST OUT ;Force guards low

{Reset counter before test}

VECT 1:DATA:FIELD RESET;VAL 0;FIELD GUARD;VAL 0 INIT:OUT
VECT 1:DATA:FIELD RESET;VAL 1;FIELD GUARD;VAL 0 INIT:OUT

{Reset line stays high throughout remainder of test}

TEST:NAME ALL:STAT?

5-14 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 5: Applications

{Poll for completion before continuing}

TEST:DEF A:BLKINT:SIZE 4096 ;Define block input test
SYST:TEST A ;Make the active test
FIELD:DEF CNT_DATA:PIN D12-1 ;Define field in new test
FIELD:NAME CNT_DATA:TRIST IN ;Make inputs bidirectional
INIT:BLOCK ;Start block read

{Poll for completion before continuing}

TEST:NAME A:STAT? ;Return stopped when done
VECT 1:COUNT 8;DATA:VAL? ;Read data from active field
VECT 9:COUNT 8;DATA:VAL? VECT 17:COUNT 8;DATA:VAL?

{Continue for remaining data verification}

ABORT TEST:NAME ALL:DEL

IO50 / IO100 User's Manual 5-15

Rev. 02Interface Technology

Chapter 5: Applications

Figure 5-5.
Counter Pattern Test Example.

%����
	'���-�'!

	�.$�

��""���
	'���-�'!�

77%
77%�%�����--�����',&-

	'����!������!��%���&�,

	'������$��

��

	'���
+�����&��

%���

##

+�����&�
�����;

##

@!'��� @!'���

	'��>��

	'��>��

�� ��

�/��&�

	'����!

�����

	$'-�

��

+�����-��'9$��,� 13

14

	$'-�

	$'-�
+�����-��'9$��,�

�����;

" � /

IO50 / IO100
Connectors

5-16 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 5: Applications

(THIS PAGE INTENTIONALLY LEFT BLANK)

IO50 / IO100 User's Manual 6-1

Rev. 02Interface Technology

Chapter 6: Installation & Basic Operation

������������������

Installation and Basic Operation

Figure 6-1.
Address Switches Set to

Dynamic Configuration Position (all 1's).

Scope of Chapter This chapter contains instructions for unpacking, inspecting, installing,
and checking out the IO50 / IO100 Series Digital I/O Modules.

Your IO50 / IO100 was thoroughly inspected and tested before shipment
from the factory and is ready for immediate operation once all installation
procedures have been completed. Carefully remove the instrument from
its shipping carton and check for any obvious damage that may have
occurred during shipment. If damage is found, report it to the freight
carrier immediately. Interface Technology is not liable for damage that
may have occurred during transit. Save the shipping carton and all pack-
ing material for possible future use.

Logical Addressing

Before installation, it is necessary to set the logical address of the IO50 /
IO100. The address switches should be set according to the requirements
of your Slot-0 Controller and system configuration. Each VXI instrument
must have a unique address. The location of the address switch is shown
in Fig 6-1. Switch positions are marked from 1 to 8, with 1 corresponding
to the least significant bit of the logical address. Switches in the "on"
(closed) position set their corresponding address bit to 0. Conversely,
switches in the "off" (open) position set their corresponding bit to 1. To

Unpacking and Inspection

Installation

�!!�	
8���
�	���

+!'	

.����
���	"

%:����
&�"��	
����	
���

�����1�������*���;

28� *8�

%�2�+

� / 0 1 � 2 3 4

��

J�J

J�J

��8����$

6-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 6: Installation & Basic Operation

allow your Slot-0 Controller to perform dynamic configuration, set all
switches to "off" (open). This corresponds to logical address 255 (FFh).

Interrupter devices such as the IO50 / IO100 are required to place their
logical address value on the lower byte of the data bus in response to bus
Interrupt Acknowledge cycles. The Slot-0 Controller uses this value as an
index to its internal exception handling vector table. Be sure that the
address set on the logical address switch does not conflict with other
vector table locations reserved by system software. Refer to your Slot-0
documentation for the type of calculation used to convert the address
switch value to a table address. If you use dynamic configuration, the
Resource Manager software must assign the logical address to a board,
being careful to protect its own reserved vector table locations. If you do
not intend to enable IO50 / IO100 VME interrupts, these precautions can
be ignored.

The output signals of the IO50 / IO100 are source by various driver ICs,
depending on the model configuration. The selection of output series
resistance and pullup resistance has been chosen to meet the majority of
user requirements. Appendix B shows the standard configuration of the
input and output logic connected to each pin and the locations of socketed
parts on the IO50 / IO100. Appendix B also makes some recommenda-
tions for special requirements. If socketed parts are to be changed, the top
shield cover must be removed, parts exchanged, and the cover replaced.
Anti-static precautions should be observed when changing any part.

After the logical address has been set and any socketed parts replacement
completed, the IO50 / IO100 can be installed in the VXI chassis. Once the
IO50 / IO100 module is seated in the chassis, tighten the retaining screws
at the top and bottom of the module front panel.

No VXI Local Bus backplane lines are connected, so the IO50 / IO100
may be installed adjacent to any other VXI device. It is not necessary to
place IO50 / IO100 modules in adjacent slots if they are being slaved
together since the VXI TTLTRG lines used for this operation connect to
all backplane slots.

The IO50 / IO100 does not require calibration.

Slot Dependency

Note

Some VXI backplanes provide
bypass jumpers or switches for
each empty slot to pass the inter-
rupt and bus acquisition control
signals. The IO50 / IO100 does
not use the bus acquisition sig-
nals but does use the interrupt pri-
ority signal. Any backplane jump-
ers in the slot position where the
IO50 / IO100 is installed should
therefore be removed. The IO50
/ IO100 provides internal pass
through connection of the bus
acquisition signals.

Calibration

IO50 / IO100 User's Manual 6-3

Rev. 02Interface Technology

Chapter 6: Installation & Basic Operation

Basic Operation Self-Test

When the VXI card cage is powered up, or after a hardware reset, the
IO50 / IO100 will perform a self test operation. If this test completes
successfully, the red SYSFAIL LED will be extinguished within 5 sec-
onds. The test will check operation of the local and shared static RAM,
operation of the local timer, the ability to read and write the shared device
dependent registers, and the ability to read and write the VXI communica-
tion registers. The outputs are not tested in a wrap-around fashion be-
cause the UUT signal connections cannot be predicted.

If the SYSFAIL LED does not turn off in 5 seconds, an error has been
detected, and the backplane SYSFAIL signal will be driven in accordance
with the VXI specification. The Slot 0 Resource Manager then has the
option of placing the IO50 / IO100 in safe state and aborting the test
sequence, or continuing with other tests. Possible causes of failure, not
including component failures, are bent pins on the VXI rear connectors, or
failure to fully seat the board into the chassis and mate with the backplane
connectors.

If the self test fails, the local processor will attempt to put limited diagnos-
tic information in the VXI Data Low Data Register. This can be read by
the Slot 0 Controller using the Byte Request VXI command. Table 2-1 on
the following page provides a list of the self-test error codes and their
descriptions.

Basicmode I/O

Before executing example commands, some mention of the VXI message
based protocol implementation of the IO50 / IO100 is required. Most Slot
0 Controllers offer some form of message based communication utility
which will probably meet the IO50 / IO100 requirements.

 NOTE:
Proprietary Slot 0 Controllers may need the following information.

The IO50 / IO100 will not put data into its output buffer until a command
requesting output is executed. The Response Register Read Ready bit will
be set to one at that time. When data is read back, the End message bit
will be set true in the last data byte. All data up to and including the end
message must be read. Each command executed will update the error
status message, which is available via the SYSTem:ERRor? command.
During initial development and debug, it is a good idea to send the
SYSTem:ERRor? command after every command, and verify a No Error
return status.

The Basicmode function is a simplified version of the programmed input/
output function. Data is not defined in fields with representative names or

6-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 6: Installation & Basic Operation

transferred under any handshake signal or timed interval control. In Basicmode, pins are defined in output
and input lists, then data values are transferred. The output enables are forced on or off by the command
execution, no control or sequencing is expected (or possible) by the UUT.

Outputs and inputs are defined as pin groups on byte boundaries for each connector (32-25, 24-17, 16-9, 8-1).
The shorthand reference used for these groups in the command set is 25, 17, 9, and 1. These values will
always define pin groups of exactly eight bits. Pin definition commands may specify multiple bytes or may
skip bytes (i.e.: A25, A17, A1).

Once the output pin list has been defined, data sent is apportioned to the output pins on a byte basis in the
order they were listed in the pin definition command (from left to right). Data read back from the defined
input pin list will be returned in the order listed in the pin definition command. Users may take advantage of
this listing order control to perform byte swapping of data read from sources with differing byte order con-
ventions. If a data value sent is not wide enough to fill the defined output pin field, bits will be zero filled
from most significant down. In this case, the pins specified last in the definition command (rightmost), will
output the available data, and the pins specified first (leftmost), will output zeros. Input commands will
return a data value equal in width to the number of defined input pins.

Code (hex) Description

100 Ram Test Error in Program RAM

101 Ram Test Error in Program RAM

200 Ram Test Error in Shared RAM

201 Ram Test Error in Shared RAM

300 VXI ASIC Read/Write Acknowledge Test Failure

301 VXI ASIC Read/Write Pattern Test Failure

400 Shadow RAM Test Failure

600 ROM Checksum Test Failure

Table 2-1.

IO50 / IO100 User's Manual 6-5

Rev. 02Interface Technology

Chapter 6: Installation & Basic Operation

Data values transferred may be from one bit up to 128 bits, all will be read or written simultaneously. The
data value output may be read back for verification. Five examples of Basicmode programming are provided
on the following pages.

1. Output TTL high level on Connector A pins 31,29,..3,1 (odd pins), and low level on Connector A
pins 32,30,..4,2 (even pins).

BASIC:DEF:OUT A25,A17,A9,A1 ;define forced output pins
BASIC:OUT 55555555 ;define data for output

Input signals on Connector A pins 32-1 (readback data just output) and signals on Connector B
pins 16-1 (all high - pullup resistors on open pins).

BASIC:OUT? ; readback data just output
BASIC:DEF:IN B9,B1 ; define input only pin field
BASIC:IN? ; read in unconnected pins

2. To output an incrementing pattern on pins 10 and 9 of connector C, the following commands are
executed.

BASIC:DEF:OUT C9,C1 ;note list from MS on left to LS on right-byte
boundary

BASIC:OUT 0000 ;output values in hex radix
BASIC 100 ;OUT operator is optional
BASIC 200
BASIC 300
BASIC:OUT? ;check last output for shorts

3. Determine current input and output pin assignments.

BASIC:CATALOG? ;returns list of unused pins
BASIC:CLEAR ;all pins back to undefined

6-6 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 6: Installation & Basic Operation

4. To output a 16 bit “address” on connector A and 16 bit “data” on connector B, and one bit “write”
strobe on connector C pin 1.

BASIC:DEF:OUT C1,B9,B1,A9,A1 ;define output pins
BASIC:OUT 000000FE00 ;address :FE00, data 0
BASIC:OUT 001234FE00 ;data now :1234, write low
BASIC:OUT 011234FE00 ;data :1234, write high (true)
BASIC:OUT 001234FE00 ;write low - addr & data held

5. To input a 16 bit “data” field on connector B resulting from “address” on connector A pins 16-1
and “read” strobe on connector C pin 1.

BASIC:DEF:OUT C1,A9,A1 ;define output pins
BASIC:DEF:IN B9,B1 ;define input pins
BASIC:OUT 00FE00 ;address :FE00, read low
BASIC:OUT 01FE00 ;read now high (true)
BASIC:IN? ;read in data
BASIC:OUT 00FE00 ;read low - address held

These examples are all done in the simple Basicmode. If the above operations are performed in the more
complex modes, pin fields may be given relevant names and manipulated individually, without requiring
static data values to be rewritten for each output. Some modes of operation can perform entire input/output
sequences under control of the local processor, often more quickly than would be possible using the command
language. For examples of this type of programming refer to Chapter 5, Application Examples.

Running and Stopping

The Basicmode of operation on a IO50 / IO100 configured for Master or Standalone operation requires only
execution of IN and OUT commands to initiate and complete data transfer. If the IO50 / IO100 is configured
for Slave operation, a VXI TTLTRG signal is required to initiate data transfer. This trigger event can come
from another IO50 / IO100 board in master mode, or any other VXI trigger generation hardware in the
system. This trigger event will input or output a single value. Master/slave operation is described in the
Basic Mode programming section.

Pinouts

Connector and pin numbering of all the various I/O modules are indicated on the following pages. See Figs
6-2 through 6-8.

IO50 / IO100 User's Manual 6-7

Rev. 02Interface Technology

Chapter 6: Installation & Basic Operation

Figure 6-2.
Pinouts for IO100, IO110, IO120.

Change 4

�
������������
�����	������������

�������
�		
��

����

��
�

��

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������
��%�
B"���������

+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

���������

�� ��!��� �!��� "�
�#�����$��

���������

��������� ��������%

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������

��%�
B"���������
+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������
��%�
B"���������

+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������
��%�
B"���������

+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

6-8 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 6: Installation & Basic Operation

Figure 6-3.
Pinouts for IO130.

See Appendix D
For Programming Instructions

Change 4

���

�������
�		
��
����

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������

��%�
B"���������
+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

���������

�� ��
�#�����$��

���������

��������� ��������%

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������
��%�
B"���������

+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

����&��"�
����&��"0
����&��"�
����&��"3

#��!��$��������� ��
����&��"5
����&����
����&���0
����&����

<	
����&���3
����&���5
����&��/�
����&��/0

<	
����&��/�
����&��/3
����&��/5

<	
<	
�&�
�&�
�&�
�&�
<	

����&��"/
����&��"1
����&��"2
����&��"4��>

#��!��$�������@!'���
����&���"
����&���/
����&���1
����&���2
<	
����&���4
����&��/"
����&��//
����&��/1
<	
����&��/2
����&��/4
����&��0"
<	
<	
�!��
�!��
�!��
�!��
<	

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������

��%�
B"���������
+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

�
������������
�����	������������

IO50 / IO100 User's Manual 6-9

Rev. 02Interface Technology

Chapter 6: Installation & Basic Operation

����&��"�
����&��"0
����&��"�
����&��"3

#��!��$��������� ��
����&��"5
����&����
����&���0
����&����

<	
����&���3
����&���5
����&��/�
����&��/0

<	
����&��/�
����&��/3
����&��/5

<	
<	
�&�
�&�
�&�
�&�
<	

����&��"/
����&��"1
����&��"2
����&��"4��

#��!��$�������@!'���
����&���"
����&���/
����&���1
����&���2
<	
����&���4
����&��/"
����&��//
����&��/1
<	
����&��/2
����&��/4
����&��0"
<	
<	
�!��
�!��
�!��
�!��
<	

���

�������
�		
��
����

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������
��%�
B"���������

+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

���������

�� �����"
�#�����$��

���������

��������� ��������%

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������
��%�
B"���������

+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

�
������������
�����	������������

����&��"�
����&��"0
����&��"�
����&��"3

#��!��$��������� ��
����&��"5
����&����
����&���0
����&����

<	
����&���3
����&���5
����&��/�
����&��/0

<	
����&��/�
����&��/3
����&��/5

<	
<	
�&�
�&�
�&�
�&�
<	

����&��"/
����&��"1
����&��"2
����&��"4��

#��!��$�������@!'���
����&���"
����&���/
����&���1
����&���2
<	
����&���4
����&��/"
����&��//
����&��/1
<	
����&��/2
����&��/4
����&��0"
<	
<	
�!��
�!��
�!��
�!��
<	

Figure 6-4.
Pinouts for IO130-002.

See Appendix D
For Programming Instructions

Change 5

6-10 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 6: Installation & Basic Operation

Figure 6-5.
Pinouts for IO140.

Change 5

�
������������
�����	������������

��;���&��"�C
��;���&��"/C
��;���&��"0C
��;���&��"1C

@!'���
��;���&��"�C
��;���&��"2C
��;���&��"3C
��;���&��"4C

#�>�%!&�����CA���&����;4
��;���&��"5C
��;���&���"C
��;���&����C
��;���&���/C

@!'���
��;���&���0C
��;���&���1C
��;���&����C
��;���&���2C

#�>�%!&�����CA���&���5;�2
��%���"C��������
��%�
B"C���������

+�%���"C��-��'9$��,�
+�%�	="C��-��'9$��,�

@!'���

��;���&��"�;
��;���&��"/;
��;���&��"0;
��;���&��"1;
@!'���
��;���&��"�;
��;���&��"2;
��;���&��"3;
��;���&��"4;

#�>�%!&�����;A���&����;4
��;���&��"5;
��;���&���";
��;���&����;
��;���&���/;
@!'���
��;���&���0;
��;���&���1;
��;���&����;
��;���&���2;

#�>�%!&�����;A���&���5;�2
��%���";��������
��%�
B";��������
+�%���";��-��'9$��,�
+�%�	=";��-��'9$��,�
@!'���

�������
�		
��

����

��
�

��

���������

�� &�
�#�����$��

��;���&���3C
��;���&���4C
��;���&���5C
��;���&��/"C

@!'���
��;���&��/�C
��;���&��//C
��;���&��/0C
��;���&��/1C

#�>�%!&�����CA���&����3;/1
��;���&��/�C
��;���&��/2C
��;���&��/3C
��;���&��/4C

@!'���
��;���&��/5C
��;���&��0"C
��;���&��0�C
��;���&��0/C

#�>�%!&�����CA���&���/�;0/
<�	
<�	
<�	
<�	

@!'���

��;���&���3;
��;���&���4;
��;���&���5;
��;���&��/";
@!'���
��;���&��/�;
��;���&��//;
��;���&��/0;
��;���&��/1;

#�>�%!&�����;A���&����3;/1
��;���&��/�;
��;���&��/2;
��;���&��/3;
��;���&��/4;
@!'���
��;���&��/5;
��;���&��0";
��;���&��0�;
��;���&��0/;

#�>�%!&�����;A���&���/�;0/
<�	
<�	
<�	
<�	
@!'���

���������

��;+��&��"�
��;+��&��"0
��;+��&��"�
��;+��&��"3

#�>�%!&�����A�D���&����;4
��;+��&��"5
��;+��&����
��;+��&���0
��;+��&����

#�>�%!&�����A������&���5;�2
��;+��&���3
��;+��&���5
��;+��&��/�
��;+��&��/0

#�>�%!&�����A������&����3;/1
��;+��&��/�
��;+��&��/3
��;+��&��/5
��;+��&��0�

#�>�%!&�����A������&���/�;0/
��%���0��������
��%�
B0��������

+�%���0��-��'9$��,�
+�%�	=0��-��'9$��,�

������C��

��;+��&��"/
��;+��&��"1
��;+��&��"2
��;+��&��"4
@!'���
��;+��&���"
��;+��&���/
��;+��&���1
��;+��&���2
@!'���
��;+��&���4
��;+��&��/"
��;+��&��//
��;+��&��/1
@!'���
��;+��&��/2
��;+��&��/4
��;+��&��0"
��;+��&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

��;	��&��"�
��;	��&��"0
��;	��&��"�
��;	��&��"3

#�>�%!&�����A�D���&����;4
��;	��&��"5
��;	��&����
��;	��&���0
��;	��&����

#�>�%!&�����A������&���5;�2
��;	��&���3
��;	��&���5
��;	��&��/�
��;	��&��/0

#�>�%!&�����A�����&����3;/1
��;	��&��/�
��;	��&��/3
��;	��&��/5
��;	��&��0�

#�>�%!&�����A������&���/�;0/
��%���/��������
��%�
B/��������

+�%���/��-��'9$��,�
+�%�	=/��-��'9$��,�

������C��

��;	��&��"/
��;	��&��"1
��;	��&��"2
��;	��&��"4
@!'���
��;	��&���"
��;	��&���/
��;	��&���1
��;	��&���2
@!'���
��;	��&���4
��;	��&��/"
��;	��&��//
��;	��&��/1
@!'���
��;	��&��/2
��;	��&��/4
��;	��&��0"
��;	��&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

��������� ��������%

IO50 / IO100 User's Manual 6-11

Rev. 02Interface Technology

Chapter 6: Installation & Basic Operation

Figure 6-6.
Pinouts for IO140-002.

Change 5

�
������������
�����	������������

��;���&��"�C
��;���&��"/C
��;���&��"0C
��;���&��"1C

@!'���
��;���&��"�C
��;���&��"2C
��;���&��"3C
��;���&��"4C

#�>�%!&�����CA���&����;4
��;���&��"5C
��;���&���"C
��;���&����C
��;���&���/C

@!'���
��;���&���0C
��;���&���1C
��;���&����C
��;���&���2C

#�>�%!&�����CA���&���5;�2
��%���"C��������
��%�
B"C���������

+�%���"C��-��'9$��,�
+�%�	="C��-��'9$��,�

@!'���

��;���&��"�;
��;���&��"/;
��;���&��"0;
��;���&��"1;
@!'���
��;���&��"�;
��;���&��"2;
��;���&��"3;
��;���&��"4;

#�>�%!&�����;A���&����;4
��;���&��"5;
��;���&���";
��;���&����;
��;���&���/;
@!'���
��;���&���0;
��;���&���1;
��;���&����;
��;���&���2;

#�>�%!&�����;A���&���5;�2
��%���";��������
��%�
B";��������
+�%���";��-��'9$��,�
+�%�	=";��-��'9$��,�
@!'���

�������
�		
��

����

��
�

��

���������

�� &����"
�#�����$��

���������

��������� ��������%

��;���&���3C
��;���&���4C
��;���&���5C
��;���&��/"C

@!'���
��;���&��/�C
��;���&��//C
��;���&��/0C
��;���&��/1C

#�>�%!&�����CA���&����3;/1
��;���&��/�C
��;���&��/2C
��;���&��/3C
��;���&��/4C

@!'���
��;���&��/5C
��;���&��0"C
��;���&��0�C
��;���&��0/C

#�>�%!&�����CA���&���/�;0/
<�	
<�	
<�	
<�	

@!'���

��;���&���3;
��;���&���4;
��;���&���5;
��;���&��/";
@!'���
��;���&��/�;
��;���&��//;
��;���&��/0;
��;���&��/1;

#�>�%!&�����;A���&����3;/1
��;���&��/�;
��;���&��/2;
��;���&��/3;
��;���&��/4;
@!'���
��;���&��/5;
��;���&��0";
��;���&��0�;
��;���&��0/;

#�>�%!&�����;A���&���/�;0/
<�	
<�	
<�	
<�	
@!'���

��;	��&���3C
��;	��&���4C
��;	��&���5C
��;	��&��/"C

@!'���
��;	��&��/�C
��;	��&��//C
��;	��&��/0C
��;	��&��/1C

#�>�%!&�����CA���&����3;/1
��;	��&��/�C
��;	��&��/2C
��;	��&��/3C
��;	��&��/4C

@!'���
��;	��&��/5C
��;	��&��0"C
��;	��&��0�C
��;	��&��0/C

#�>�%!&�����CA���&���/�;0/
<�	
<�	
<�	
<�	

@!'���

��;	��&���3;
��;	��&���4;
��;	��&���5;
��;	��&��/";
@!'���
��;	��&��/�;
��;	��&��//;
��;	��&��/0;
��;	��&��/1;

#�>�%!&�����;A���&����3;/1
��;	��&��/�;
��;	��&��/2;
��;	��&��/3;
��;	��&��/4;
@!'���
��;	��&��/5;
��;	��&��0";
��;	��&��0�;
��;	��&��0/;

#�>�%!&�����;A���&���/�;0/
<�	
<�	
<�	
<�	
@!'���

��;	��&��"�C
��;	��&��"/C
��;	��&��"0C
��;	��&��"1C

@!'���
��;	��&��"�C
��;	��&��"2C
��;	��&��"3C
��;	��&��"4C

#�>�%!&�����CA���&����;4
��;	��&��"5C
��;	��&���"C
��;	��&����C
��;	��&���/C

@!'���
��;	��&���0C
��;	��&���1C
��;	��&����C
��;	��&���2C

#�>�%!&�����CA���&���5;�2
��%���/C��������
��%�
B/C��������

+�%���/C��-��'9$��,�
+�%�	=/C��-��'9$��,�

@!'���

��;	��&��"�;
��;	��&��"/;
��;	��&��"0;
��;	��&��"1;
@!'���
��;	��&��"�;
��;	��&��"2;
��;	��&��"3;
��;	��&��"4;

#�>�%!&�����;A���&����;4
��;	��&��"5;
��;	��&���";
��;	��&����;
��;	��&���/;
@!'���
��;	��&���0;
��;	��&���1;
��;	��&����;
��;	��&���2;

#�>�%!&�����;A���&���5;�2
��%���/;��������
��%�
B/;��������
+�%���/;��-��'9$��,�
+�%�	=/;��-��'9$��,�
@!'���

6-12 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 6: Installation & Basic Operation

Figure 6-7.
Pinouts for IO50, IO51, IO52.

Change 5

�
������������
�����	������������

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������

��%�
B"���������
+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

�������
�		
��

����

��
�

��

�
�

�
�

�� ��

���������

����!���� !����"
�#�����$��

���������

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������
��%�
B"���������

+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

IO50 / IO100 User's Manual 6-13

Rev. 02Interface Technology

Chapter 6: Installation & Basic Operation

Figure 6-8.
Pinouts for IO53.

Change 5

�
������������
�����	������������

�������
�		
��

����

��
�

��

�
�

�
�

�� ��

����&��"�
����&��"0
����&��"�
����&��"3

#�>�%!&�����A�����&����;4
����&��"5
����&����
����&���0
����&����

#�>�%!&�����A������&���5;�2
����&���3
����&���5
����&��/�
����&��/0

#�>�%!&�����A�����&����3;/1
����&��/�
����&��/3
����&��/5
����&��0�

#�>�%!&�����A������&���/�;0/
��%���"��������

��%�
B"���������
+�%���"��-��'9$��,�
+�%�	="��-��'9$��,�

������C��

����&��"/
����&��"1
����&��"2
����&��"4
@!'���
����&���"
����&���/
����&���1
����&���2
@!'���
����&���4>
����&��/"
��>��&��//
����&��/1
@!'���
����&��/2
����&��/4
����&��0"
����&��0/
@!'���
@!'���
@!'���
@!'���
@!'���
������C��

���������

����
�#�����$��

���������

����&��"�
����&��"0
����&��"�
����&��"3

#��!��$��������� ��
����&��"5
����&����
����&���0
����&����

<	
����&���3
����&���5
����&��/�
����&��/0

<	
����&��/�
����&��/3
����&��/5

<	
<	
�&�
�&�
�&�
�&�
<	

����&��"/
����&��"1
����&��"2
����&��"4��>

#��!��$�������@!'���
����&���"
����&���/
����&���1
����&���2
<	
����&���4
����&��/"
����&��//
����&��/1
<	
����&��/2
����&��/4
����&��0"
<	
<	
�!��
�!��
�!��
�!��
<	

6-14 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Chapter 6: Installation & Basic Operation

Figure 6-9.
Pinouts for IO54.

Change 5

�
������������
�����	������������

��;���&��"�C
��;���&��"/C
��;���&��"0C
��;���&��"1C

@!'���
��;���&��"�C
��;���&��"2C
��;���&��"3C
��;���&��"4C

#�>�%!&�����CA���&����;4
��;���&��"5C
��;���&���"C
��;���&����C
��;���&���/C

@!'���
��;���&���0C
��;���&���1C
��;���&����C
��;���&���2C

#�>�%!&�����CA���&���5;�2
��%���"C��������
��%�
B"C���������

+�%���"C��-��'9$��,�
+�%�	="C��-��'9$��,�

@!'���

��;���&��"�;
��;���&��"/;
��;���&��"0;
��;���&��"1;
@!'���
��;���&��"�;
��;���&��"2;
��;���&��"3;
��;���&��"4;

#�>�%!&�����;A���&����;4
��;���&��"5;
��;���&���";
��;���&����;
��;���&���/;
@!'���
��;���&���0;
��;���&���1;
��;���&����;
��;���&���2;

#�>�%!&�����;A���&���5;�2
��%���";��������
��%�
B";��������
+�%���";��-��'9$��,�
+�%�	=";��-��'9$��,�
@!'���

�������
�		
��

����

��
�

��

���������

���&
�#�����$��

��;���&���3C
��;���&���4C
��;���&���5C
��;���&��/"C

@!'���
��;���&��/�C
��;���&��//C
��;���&��/0C
��;���&��/1C

#�>�%!&�����CA���&����3;/1
��;���&��/�C
��;���&��/2C
��;���&��/3C
��;���&��/4C

@!'���
��;���&��/5C
��;���&��0"C
��;���&��0�C
��;���&��0/C

#�>�%!&�����CA���&���/�;0/
<�	
<�	
<�	
<�	

@!'���

��;���&���3;
��;���&���4;
��;���&���5;
��;���&��/";
@!'���
��;���&��/�;
��;���&��//;
��;���&��/0;
��;���&��/1;

#�>�%!&�����;A���&����3;/1
��;���&��/�;
��;���&��/2;
��;���&��/3;
��;���&��/4;
@!'���
��;���&��/5;
��;���&��0";
��;���&��0�;
��;���&��0/;

#�>�%!&�����;A���&���/�;0/
<�	
<�	
<�	
<�	
@!'���

���������

IO50 / IO100 User's Manual A-1

Rev. 02Interface Technology

Appendix A: Specifications

A.1 SPECIFICATIONS
Timing:

Timed Block I/O, 0 delay
Output: .. 20 KHz, Typ.
Input: ... 32 KHz, Typ.

Handshake I/O, Timed Block I/O Inactive
Byte Request to Data Valid: .. 83us, Typ.
Byte Available to Data Acknowledge: .. 43us, Typ.

Memory Emulation, Timed Block I/O Inactive
Address in to Data Valid (read cycle): ... 230us, Typ.
Address in to Data Latched (write cycle): .. 50us, Typ.

Direct Register Access Cycle Time: .. 420ns, Min.

External Tristate Control (IO50/IO100, IO51/IO110)

Enable: .. 36ns, Max.
Disable: ... 36ns, Max.

External Output Enable Control (IO52/IO120)

Enable: ... 36ns, Max
Disable: ... 40ns, Max.

Skew
Channel-to-channel:.. 20ns, Max.
Card-to-card (Slave Mode, TTLTRG): .. 52ns, Max.

Drivers:
IO50 / IO100: .. 74F244
IO51 / IO110: .. 74ACT244
IO52 / IO120: ... 74AS760
IO53 / IO130: ... LH1505AB
IO54 / IO140: ..AM26LS31CD

Receivers:

IO50 / IO100: .. 74HCTC7CD
IO51 / IO110: .. 74HCTC7CD
IO52 / IO120: .. 74HCTC7CD
IO53 / IO130: ... N/A
IO54 / IO140: ... AM26LS32ACD

Change 1

A-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Appendix A: Specifications

Handshake & Control

Input Strobe: .. 2 per connector
Output Strobe: ... 2 per connector
Tri-state Control Inputs: ...4 per connector (IO100 & IO110)

Output Enable Inputs: ... 4 per connector (IO120)

VXI Interface

Size: ..C-Size, Single Slot
Type: ...Message-based, Servant only
Configuration: .. Static or Dynamic
Interrupt Level: ..Programmable
TTLTRG: ... Input or output, selectable in groups of two
Dual-access RAM: ... 256KB
Other: .. A24/D16 Only, Direct Register Access

Power and Temp.

+5.0V: .. 3.2A, Typ.
+5.0V Outputs: .. 0.5A per connector, Max.

Storage Temp.: .. -40oC to +75oC
Specified Operating Temp.: .. +25oC, ±10oC
Maximum Operating Temp.: ... 0oC to 50oC

A.2 CONNECTORS & FUSES
Mating Connectors

T&B Ansley: .. 609-5030

Fuses

VXI Module: ... Little Fuse, 252-007
+5.0V Output Pins: ..Raychem, RBE110A

Change 4

IO50 / IO100 User's Manual B-1

Rev. 02Interface Technology

Appendix B: Drivers and Receivers

B.1 DRIVER/RECEIVER CONFIGURATIONS

The IO50 / IO100 I/O modules support various input and output termination schemes. The
diagrams on the following pages detail standard data pin configurations, tri-state control/output
enable pin configurations, request handshake pin configurations and acknowledge handshake
pin configurations. In addition to the standard pin configurations, suggested pin configurations
for a terminated bus interface and +15V receiving inputs are also shown. The components
shown in dashed boxes are socketed, customer replaceable parts. Tables B-1 and B-2 indicate
the socketed component locations and part numbers for the IO50 / IO100 modules.

B-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Appendix B: Drivers and Receivers

Table B-1.
Data Input/Output Pin.

Driver

Rout

Rin

Rpu

74F244

898-3-R22
(22 Ohm)

898-3-R820
(820 Ohm)

4310R-101-103
(10k Ohm)

74ACT244

898-3-R22
(22 Ohm)

898-3-R820
(820 Ohm)

4310R-101-103
(10k Ohm)

74F760

898-3-R22
(22 Ohm)

898-3-R820
(820 Ohm)

4310R-101-103
(10k Ohm)

74ACT244

RS-422
Compliant

RS-422
Compliant

RS-422
Compliant

LH1505AB

N/A

N/A

4310R-101-103
(10k Ohm)

IO50
IO100

IO51
IO110

IO52
IO120

IO53
IO130

IO54
IO140

Change 3

IO50 / IO100 User's Manual B-3

Rev. 02Interface Technology

Appendix B: Drivers and Receivers

Figure B-1.
Standard Data/Tristate Configurations.

,���

,��

�%

�$�+,$�2
�������8

,��

2��G

2��G,+;G

�$�+,$�21+:�+,$�2
�,�8���+���$�,�2

4����646
@,	
	�)	�B

8��C+�+����,�8
�$���8(+����:+8

�������$
���)	�

)$+!�+(���+$+�"�!���!:�6#(+$��!

,��

,��

�%

����,�8���+���$�,�2

+:�+,$�2��,�8���+
��$�,�2���$

)$+!�+(���8$�(!+&�$(�)$+$����!$(�&�"�!���!:�6#(+$��!

B-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Appendix B: Drivers and Receivers

Figure B-2.
Standard Handshake Configurations.

)$+!�+(��(��#�)$�2+!�)2+'��"�!���!:�6#(+$��!

,��

,��

�%

���,+9�+8�
(�$�8(�C+
��$�,�2

,+9�+8��(�$�8(�C+
�$������$

2��G

4����646

)$+!�+(��+�'!�9&��6��2+!�)2+'��"�!���!:�6#(+$��!

,���

,��

�%

�$�+,$�2
�������8

,+;G

�$%+,�+����C$�-2+�;+
(�$�8(�C+���$�,�2

8��C+�+����,�8
�$���8(+����:+8

��C$�-2+�;+
(�$�8(�C+���$���)	�

IO50 / IO100 User's Manual B-5

Rev. 02Interface Technology

Appendix B: Drivers and Receivers

Table B-2.

IO50
IO100

IO51
IO110

IO52
IO120

IO53
IO130

IO54
IO140

Rpu

Rin

4310R-101-103
(10k Ohm)

898-3-R22
(22 Ohm)

4310R-101-103
(10k Ohm)

898-3-R22
(22 Ohm)

4310R-101-103
(10k Ohm)

898-3-R22
(22 Ohm))

 RS-422
Compliant

RS-422
Compliant

4310R-101-103
(10k Ohm)

N/A

Driver

Rout

Rpu

74F244

898-3-R22
(22 Ohm)

4310R-101-103
(10k Ohm)

74ACT244

898-3-R22
(22 Ohm)

4310R-101-103
(10k Ohm)

74F760

898-3-R22
(22 Ohm)

4310R-101-103
(10k Ohm)

74ACT244

RS-422
Compliant

RS-422
Compliant

LH1505AB

N/A

4310R-101-103
(10k Ohm)

Acknowledge Handshake Pin

External Tristate Control/Output Enable Pin

Request Handshake Pin

Rpu

Rin

4310R-101-103
(10k Ohm)

898-3-R820
(820 Ohm)

4310R-101-103
(10k Ohm)

898-3-R820
(820 Ohm)

4310R-101-103
(10k Ohm)

898-3-R820
(820 Ohm)

 RS-422
Compliant

RS-422
Compliant

4310R-101-103
(10k Ohm)

N/A

Change 3

B-6 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Appendix B: Drivers and Receivers

Figure B-3.
Suggested Alternate Configurations.

��	�

,�!

�$�+,$�2
�������8

,��

2��G

2��G,+;G

�$�+,$�21+:�+,$�2
�,�8���+���$�,�2

4����646
8��C+�+����,�8
�$���8(+����:+8

�������$
���)	�

F��
��C

)#66�)$����+$+�"�!���!:�6#(+$��!�:�(�(����,�!6��!"#$)�$��<��,

)#66�)$����+$+�"�!���!:�6#(+$��!�:�(�$�(*�!+$���%#)��!$�(:+��

8����

�%

�$�+,$�2
�������8

,��

2��G

2��G,+;G

�$�+,$�21+:�+,$�2
�,�8���+���$�,�2

4����646
8��C+�+����,�8
�$���8(+����:+8

�������$
���)	�

F��

���

66�
4�.���

,��!

4�������

IO50 / IO100 User's Manual C-1

Rev. 02Interface Technology

Appendix C: Error Codes

COMMAND ERRORS
0,"No Error"
-101,"Invalid character;Semicolon can’t start command"
-103,"Invalid separator;Semicolon or colon expected"
-101,"Invalid character;Syntax error at second colon"
-101,"Invalid character;Syntax error at semicolon following colon"
-101,"Invalid character;Double semicolons not allowed"
-103,"Invalid separator;Asterisk found instead of separator"
-111,"Header separator error;Alpha after 488.2 common cmd invalid"
-101,"Invalid character;Double colons not allowed"
-101,"Invalid character;Colon found but no commands at a lower level"
-101,"Invalid character;Unknown in this context"
-101,"Invalid character;Double semicolons not allowed"
-103,"Invalid separator;Asterisk found instead of separator"
-103,"Invalid separator;Alpha found instead of separator"
-101,"Invalid character;Asterisk found instead of separator"
-158,"String data not allowed;No match found for parameter string"
-113,"Undefined header;A 488.2 common command was expected"
-114,"Header suffix out of range;Number after 488.2 cmd not allowed"
-113,"Undefined header;No match found for command"
-131,"Invalid suffix;Suffix not appropriate"
-113,"Undefined header;Question mark expected"
-101,"Invalid character;Unexpected character found after header"
-113,"Undefined header;Number attached to header not allowed"
-111,"Header separator error;A space separator was expected"
-131,"Invalid suffix;Suffix not appropriate for command"
-144,"Character data too long;Name is maximum of 8 chars"
-103,"Invalid Separator;Comma not found as expected"
-104,"Data type error;PIN LIST syntax <A|B|C|D><n>[,<A|B|C|D><n>] not found"
-104,"Data type error;Syntax error on number list parameter"
-104,"Data type error;Syntax error on data list parameter"

EXECUTION ERRORS

-224,"Illegal parameter value;Invalid conversion"
-224,"Illegal parameter value;Invalid base value"
-224,"Illegal parameter value;Undefined parameter"
-224,"Illegal parameter value;Invalid data type"
-222,"Data out of range;Value out of current radix bounds"
-222,"Data out of range;Baud rate not supported"

C-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Appendix C: Error Codes

-222,"Data out of range;Data bits must be 7 or 8"
-222,"Data out of range;Stop bits must be 1 to 2"
-222,"Data out of range;Parity type not supported"
-241,"Hardware missing;Address generates bus/addr exception"
-224,"Undefined field name"
-224,"Undefined test name"
-225,"All available fields have been defined"
-225,"All available tests have been defined"
-225,"Not enough Free IO vectors available for allocation"
-222,"Data out of range;Valid connector names are A, B, C, & D"
-222,"Data out of range;Valid pin numbers are 1-32"
-222,"Data out of range;Valid channels are 1-32"
-224,"Invalid field name, only 8 char."
-224,"No default field is defined"
-224,"No working test is defined"
-224,"Invalid vector number"
-224,"Invalid test name, only 8 char."
-224,"Invalid test name"
-221,"Test name is already defined"
-221,"Field name is already defined"
-222,"Data out of range;Valid trace word numbers are 1-8"
-220,"Not enough data value were provided base on the count value"
-222,"Data out of range;Statement’s parameter must be 1 to 15360"
-241,"Invalid operation; The shared memory option is not installed"
-230,"Invaid Learn format; Learn encountered invalid format, Learn aboorted"
-230,"Incorrect I/O Card; Different I/O Card was used on Learn? command"
-221,"Invalid Learn record header"
-221,"Learn command requires additional blocks of data to complete Learn session"
-221,"Setting conflict;Tristate settings conflicts with other field’s Tristate settings"
-221,"Invalid setting;Tristate must be EXTNORMal or EXTINVerted for current test"
-221,"Invalid setting;Tristate must be INput for current test"
-221,"Invalid setting;Tristate must be OUTput for current test"
-221,"Invalid setting;Invalid test type"
-221,"Invalid I/O vector number"
-222,"Data out of range;Valid pin group numbers are 1,9,17 or 25"
-222,"Data out of range;A maximum of 16 items allowed on PIN_GROUP_LIST"
-221,"Settings conflict;BASICmode pin group already defined"
-221,"Settings conflict;BASICmode pin group not defined"
-221,"Test definition;No test MUST be defined when learning from LEARN"
-213,"System state;No test can be executing when using BASICmode"

IO50 / IO100 User's Manual C-3

Rev. 02Interface Technology

Appendix C: Error Codes

-213,"System state;Only one timed and one handshake test can be executing at any given
time"

-221,"Test type;Only PRGIOTimed and PRGIOHandshake may use INITate:INput or
INITiate:OUTput"

-221,"Test type;PRGIOTimed and PRGIOHandshake cannot use INITate:BLOCk"
-221,"Address Field:BUSEMULation must have an Address field define to execute"
-221,"System state;Stop any executing test to use this command"
-222,"Data out of range;Maximum timeout allowed is 1ms. Minimum is 0"
-221,"System state;Stop executing the current test to use this command"
-223,"Number of data values exceeded the provided count value"
-221,"System state:System must be in STANDalone to execute in block mode"
-222,"Invalid vector or count;Vector and Count value of one is expected for program I/O"
-222,"Invalid count;Must be greater that zero"
-222,"Invalid size;Must be a power of two for MEMEMUlation"
-222,"Invalid field;Number of field bits exceeds the size of test"
-222,"Undefined Tristate;Tristate setting MUST be defined for ALL fields"
-221,"Invalid setting;Tristate must NOT be INput for current test"
-221,"Invalid setting;Acknowledge is fixed to inverted for MEMEMUlation"

DEVICE DEPENDANT ERRORS
-350,"Queue overflow;Tail of output string is lost"
-316,"Out of DRAM memory"
-310,"System error;Software bug - error number is out of range"

QUERY ERRORS

-410,"Query INTERRUPTED;Previous query output within string was overwritten"
-410,"Query INTERRUPTED;Previous query output lost"
-420,"Query UNTERMINATED;Output buffer was empty"

C-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Appendix C: Error Codes

(THIS PAGE INTENTIONALLY LEFT BLANK)

IO50 / IO100 User's Manual D-1

Rev. 02Interface Technology

Programming for HV Switching Option

��������������������

Programming Instructions
for High Voltage Switching Option

Applicability
Note

The information contained in this appendix applies to the IO53 and
IO130 modules only.

The high voltage relay card is programmed with the Connector D data
output pins. The upper two pins (pin 127 and 128) are used as enable
strobes to write control data to latches on the option board. The remaining
30 data pins from Connector D are ued to provide "on/off" and "high/low"
control bits for the 30 high voltage switching pins.

The pinout for the 50-pin Connector D with the high voltage option are as
shown in Fig D-1

Figure D-1.
Pinout for Connectors B and D with HV option.

 !���"�!����/������#������0
 !���"�!��	�/����������!��10

����&��"�
����&��"0
����&��"�
����&��"3

#��!��$��������� ��
����&��"5
����&����
����&���0
����&����

<	
����&���3
����&���5
����&��/�
����&��/0

<	
����&��/�
����&��/3
����&��/5

<	
<	
�&�
�&�
�&�
�&�
<	

����&��"/
����&��"1
����&��"2
����&��"4��>

#��!��$�������@!'���
����&���"
����&���/
����&���1
����&���2
<	
����&���4
����&��/"
����&��//
����&��/1
<	
����&��/2
����&��/4
����&��0"
<	
<	
�!��
�!��
�!��
�!��
<	

�&��"�
�&��"0
�&��"�
�&��"3

�&��"5
�&����
�&���0
�&����

�&���3
�&���5
�&��/�
�&��/0

�&��/�
�&��/3
�&��/5

"�
"0
"�
"3
"5
��
�0
��
�3
�5
/�
/0
/�
/3
/5
0�
00
0�
03
05
1�
10
1�
13
15

"/
"1
"2
"4
�"
�/
�1
�2
�4
/"
//
/1
/2
/4
0"
0/
01
02
04
1"
1/
11
12
14
�"

�&��"/
�&��"1
�&��"2
�&��"4

�&���"
�&���/
�&���1
�&���2

�&���4
�&��/"
�&��//
�&��/1

�&��/2
�&��/4
�&��0"

Change 5

D-2 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Programming for HV Switching Option

Register-Level Bit Programming.

The register level bit programming definitions are shown below. For these bit patterns to perform the action
described, other conditions must be true. First, the data pins for connector D must be defined as outputs so
their tristate drivers are turned on. If register-based programming is used, the second stage latch for connec-
tor D data should be forced open. Each time the data patterns below are output, the Data Output Valid stribe
for connector D must be written high and then low again to clock the data into the pin control latches. All of
these operations are automatically performed if the message-based SCPI command set is used, as shown in
the example below.

The register level bit programming definitions are:

Bit Bit Bit
128 127 126, 125 97, 96
0 0 Don't care - outputs retain present state.

0 1 1 = connect pin to Vin input level.
0 = connect pin to Vrtn input level.

- Bit 126 controls HV Pin 30.
- Bit 125 controls HV Pin 29.

:
:

- Bit 97 controls HV Pin 2.
- Bit 96 controls HV Pin 1.

1 0 1 = enable output pin for voltage output.
0 = disable pin output (tristate).

- Bit 126 controls HV Pin 30.
- Bit 125 controls HV Pin 29.

:
:

- Bit 97 controls HV Pin 2.
- Bit 96 controls HV Pin 1.

1 1 Enable control and data together (not recommended).

Note
See Figure D1 for diagram showing relationship between above bit numbers and
Connector D pin numbers.

Change 5

IO50 / IO100 User's Manual D-3

Rev. 02Interface Technology

Programming for HV Switching Option

SCPI PROGRAMMING.
Note that when using the field definition capability of the IO130 VXI software that data pin
outputs are only changed when the field name for those pins is assigned a new vector. If you
set a field bit with a command, then send several other commands that do not change that field,
the output is not changed.

Note that special field names associated with UUT control functions can be defined for bits
126-96, if desired.

Initialize connector D to timed output mode for high voltage option control.

TEST:DEF D:PRGIOTIMED
SYST:TEST D
TEST:HANDSHAKE:ACKNOWLEDGE:OUTPUT NORMAL

Name the two control pins CTLEN and make them outputs. 1(OXO1) is HIGH/LOW WRITE
and 2(0X10) is tristate control.

FIELD:DEFINE CTLEN:PIN D32-31
FIELD:NAME CTLEN:TRISTATE OUT

Name the remaining 30 pins PINCTL and make them outputs.

FIELD:DEFINE PINCTL:PIN D30-1
FIELD:NAME PINCTL:TRISTATE OUT

The following assumes that -48V connects to Vin and Gnd connects to Vrtn. First set pin level
before enabling tristate. Set odd pins to -48 and even pins to gnd.

VECT1:DATA:FIELD CTLEN;VAL 1;FIELD PINCTL;VAL 15555555
INIT:OUT

Turn on pins 1-16.

VECT 1:DATA:FIELD CTLEN;VAL 2;FIELD PINCTL;VAL FFFF
INIT:OUT

This may be unnecessary, but it incures that no spurious clocking will occur if inverted polarity
tests are un on connectors A-C.

VECT 1:DATA:FIELD CTLEN;VAL 0
INIT:OUT

Change 5

D-4 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Programming for HV Switching Option

Here the active test could be changed to perform other operations using digital I/O on pins 1-95.
Any operations, including basic mode I/O, can be performed as long as bits 128 and 127 remain
0, the high voltage outputs remain static.

Turn off pins 16-1, turn on pins 17-30.

VECT 1:DATA:FIELD CTLEN;VAL 1;FIELD PINCTL;VAL 3FFF0000
INIT:OUT

Now turn off all pins to change data.

VECT 1:DAT:FIELD CTLEN;VAL 2;FIELD PINCTL;VAL 0
INIT:OUT

Now set all pins to -48V.

VECT 1:DATA:FIELD CTLEN;VAL 1;FIELD PINCTL;VAL 3FFFFFFF
INIT:OUT

Now enable all pin outputs.

VECT 1:DATA:FIELD CTLEN;VAL 2;FIELD PINCTL;VAL 3FFFFFFF
INIT:OUT

Now switch pin outputs while leaving tristates enabled. Toggle all bits to make a square wave
output.

VECT 1:DATA:FIELD CTLEN;VAL 1;FIELD PINCTL;VAL 15555555
INIT:OUT

Note that CTLEN retains last value, so there is no need to re-send.

VECT 1:DATA:FIELD PINCTL;VAL 2AAAAAAA
INIT:OUT
VECT 1:DATA:FIELD PINCTL;VAL 15555555
INIT:OUT
VECT 1:DATA:FIELD PINCTL;VAL 2AAAAAAA
INIT:OUT

Set HV pins 16 and 2 to -48V, set all others to ground.

VECT 1:DATA:FIELD PINCTL;VAL 8002
INIT:OUT

IO50 / IO100 User's Manual D-5

Rev. 02Interface Technology

Programming for HV Switching Option

REGISTER -BASED PROGRAMMING INSTRUCTIONS.
The following instructions refer to Figure 5-1 in the IO100VXI manual, and the Unique Bit
Functions figure for the High Voltage switch card. The control registers are byte-wide, write
only devices. Since bits cannot be individually manipulated in the hardware, a common prac-
tice is to keep register "images" in RAM. The masking and "ORing" operations required for
changing single bits are then performed in RAM, and then the control word is written to the
hardware.

Register addresses will be determined by the VXI Resource Manager at power up configura-
tion. The VXI registers shown in the example will be offset by some value for 0XC000 to
0XFFC0. The offset must be determined using functions provided with the Resource Manager
software. In the example, "ba" is used to represent the base address offset.

The following example shows the programming steps for a High Voltage switch card on con-
nector D. No other connectors are assumed active, so their control bits are all zero-filled.

The IO130VXI output function uses a two stage latch to provide for simultaneous update across
128 pins. The first stage is a set of byte addressable registers, the final stage is a transparent
latch. For the example shown, the second stage latches are left open. All 30 pins will be
switched or enabled at the same time anyway, by virtue of the clock strobe signal used to
program pin control.

A strobe signal is used to clock the control bits from the connector B data field into the pin
control registers on the high voltage switch card. This clocking is performed by writing the
Data Valid strobe for connector D high, and then low, after each change in the pin control data
field. This separate strobe insures that setup and hold times are met for the enable and control
bits. Note that the pin control registers on the HV switch card are reset by a hardware reset, a
VXI Control Register soft reset, or the user provided External Reset input from the front panel
connector.

The HV switch card relies on the IO130VXI connector D digital pins for programming infor-
mation. Since the normal function of these pins (without the HV switch option installed) can
be programmed for input or output, they must first be programmed for output only.

Example: The High Voltage pins 25-1 are switched on and off in a "walking one" pattern in
this example. It is assumed that Vin is connected to +15V and Vrtn is connected to the +15V
source ground (0V). The example is not written in any real programming language, but is
meant only to be illustrative of bit use.

Program Example .. Enter From Initialization or Reset.

write 0XF000 address ba+0X3A /* Conn D outputs on */

D-6 IO50 / IO100 User's Manual

Rev. 02 Interface Technology

Programming for HV Switching Option

write 0X0 address ba+0X3C /* Conn D internal control */
write 0X800 address ba+0X3C /* Open Conn D output latch */
write 0X4000 address ba+0X2C /* Switch strobe on and pins low */
write 0X0 address ba+0X2E /* Set all pins low before enable */
call cntrl_clk /* Call function to clock registers */
write 0X81FF address ba+0X2C /* Enable strobe on and pins 25-17 */
write 0XFFFF address ba+0X2E /* Enable pins 16-1 */
call cntrl_clk /* Call function to clock registers */

/* Output pins now on - all at 0 volts */
/* Now start walking a one from pin 1 */
/* to pin 25 */

write 0X4000 address ba+0X2C /* turn on switch control */
set variable i = 0X1 /* Pin 1 gets 15V first, then 2-25 */
for i = 1 to 0X8000
 write i to address ba+0X2E /* Need write only lower 16 pins */
 call cntrl_clk /* Call function to clock registers */
 i = i*2
next i
write 0X0 address ba+0X2E /* Zero pin 16 */

/* Finished lower 16 - do upper with */
/* variable j */

for i = 1 to 0X10
 j = i .or. 0x4000 /* Leave switch enable on */
 write j to address ba+0X2C /* Need write only upper 14 pins */
 call cntrl_clk /* Call function to clock registers */
 i = i*2
next i

/* Now leave pin 25 on while going to */
/* do some digital I/O */

j = j .and. 0X3FFF /* Zero enable bits */
write j to address ba+0X2C /* Always leave all enables low */

/* when going off to other programming */
/* operations */

done
function cntrl_clk
write 0X800 address ba+0X34 /* Set Conn d Data Valid high */
write 0X0 address ba+0X34 /* Return Data Valid low */
return

TechNotes

AppNotes & TechNotes
Note:

This section contains Application Notes and Technical Notes describing the
technical details and applications of the subject equimment.

IO50 / IO100 User's Manual AppNotes & TechNotes

Interface Technology Rev. 02

AppNotes &

(THIS PAGE LEFT BLANK INTENTIONALLY)

App/Tech Note: IO50/100-01 1

OriginalInterface Technology

IO53 and IO130 Backplane Voltages

Using IO50 and IO130
Backplane Voltages

IO50/100-01

Purpose This tech note provides instructions for accessing VXI backplane voltages
to be used by Interface Technology’s IO53/130 High Voltage Switching
Option. The following information assumes that the user is familiar with
message-based instruments and SCPI programming of those instruments.

The IO130 and IO53 use 32 output channels to drive 30 optically isolated
solid state relays. This allows the modules to control high voltage appli-
cations up to 100 volts. Switched voltages can be either user supplied, or
selected from +5, ± 12 and ± 24 volts available from the VXI backplane.
Both modules use a daughter board to provide the switched high voltage
outputs.

On the IO130 and IO53 daughter cards there are (2) jumper connectors J4
(pins 1-5) and J3 (pins 1-5) (see figure 1). Also, on the IO130 and IO53
digital IO mother board are (2) jumpers labeled J11 and J16. These are
provided to jumper voltages from the backplane instead of supplying
voltages to Vin/Vrtn pins on the module’s front panel.

The pinouts for the jumper locations on the motherboard are listed below.

App/Tech Note

App/Tech Note: IO50/100-01

Interface Technology

2 IO53 and IO130 Backplane Voltages

Original

On the High Voltage daughter cards, VXI voltage input and pass through
pins are available at jumper locations J3 and J4. Pins 1 and 2 (for both
jumper locations J3 and J4) are connected to Vin. Pins 3 and 4 (for both
jumper locations J3 and J4) are connected to Vrtn. Thus, by connecting
the appropriate jumpers from the daughter card to the motherboard, the
user can supply VXI backplane voltages from +5, ± 12 and ± 24 volts.

Note:
When connecting voltages from the VXI backplane, there should
not be any power sources connected to Vin or Vrtn at the front
panel.

Figure 1.

Example:

The High Voltage pins for the IO130 are located on connector D. In order
to utilize the option you must program connector D to the desired specifi-
cations. The IO130 is a message based instrument capable of being
programmed via SCPI commands. This example will use SCPI program-
ming to set up the parameters and run the test.

First, the user will open the top cover of the IO130 to view the daughter
card and mother board as shown in Figure 1. Next, wire the IO130 as
directed below (refer to Figure 2).

�

� �

�

I�

I6

I�

I�5

I��

(�'��%�"��'	
���'��	�����!

App/Tech Note: IO50/100-01 3

OriginalInterface Technology

IO53 and IO130 Backplane Voltages

Connect J4 pin 2 to J11 pin 7. This will tie Vin to +12V on the VXI
backplane.

Connect J4 pin 4 to J11 pin 3. This will tie Vrtn to GND.

*Define a test, test type, and test size (number of vectors to be used to
store data). Initialize connector D to block out timed mode for high
voltage output control.*

TEST:DEF D:BLKOUTTIMED:SIZE 20
SYST:TEST D
TEST:HANDSHAKE:ACKNOWLEDGE:OUTPUT NORMAL

Set timeout parameter to 1 ms for each data vector output.

TEST:TIME:OUT 0.001000

*Name the two control pins CTLEN and make them outputs. 1 (#h01) is
High/Low Write and 2 (#h02) is tristate control.*

FIELD:DEF CTLEN:PIN D32,D31
FIELD:NAME CTLEN:TRISTATE OUTPUT

Name the remaining 30 pins PINCTL and make them outputs.

FIELD:DEF PINCTL:PIN D30-1
FIELD:NAME PINCTL:TRISTATE OUTPUT

*At this point the IO130 should be connected as shown in figure 2.
Where Vin connects to +12 V and Vrtn connects to GND. Now, deter-
mine the pin levels before enabling tristate. Set the odd pins to +12V
and even to GND.*

SYST:FIEL CTLEN
VEC 1:COUNT 10;DATA 1,1,1,1,1,1,1,1,1,1
VEC 11:COUNT 10;DATA 1,1,1,1,1,1,1,1,1,1
SYST:FIEL PINCTL
VEC 1:COUNT 4;DATA 15555555,15555555,15555555,15555555
VEC 5:COUNT 4;DATA 15555555,15555555,15555555,15555555
VEC 9:COUNT 4;DATA 15555555,15555555,15555555,15555555
VEC 13:COUNT 4;DATA 15555555,15555555,15555555,15555555
VEC 17:COUNT 4;DATA 15555555,15555555,15555555,15555555

INIT:BLOCK

Enable pins for output (turn on).

App/Tech Note: IO50/100-01

Interface Technology

4 IO53 and IO130 Backplane Voltages

Original

SYST:FIEL CTLEN
VEC 1:COUNT 10;DATA 2,2,2,2,2,2,2,2,2,2
VEC 11:COUNT 10;DATA 2,2,2,2,2,2,2,2,2,2
SYST:FIEL PINCTL
VEC 1:COUNT 4;DATA 3FFFFFFF,3FFFFFFF,3FFFFFFF,3FFFFFFF
VEC 5:COUNT 4;DATA 3FFFFFFF,3FFFFFFF,3FFFFFFF,3FFFFFFF
VEC 9:COUNT 4;DATA 3FFFFFFF,3FFFFFFF,3FFFFFFF,3FFFFFFF
VEC 13:COUNT 4;DATA 3FFFFFFF,3FFFFFFF,3FFFFFFF,3FFFFFFF
VEC 17:COUNT 4;DATA 3FFFFFFF,3FFFFFFF,3FFFFFFF,3FFFFFFF

INIT:BLOCK

*Odd pins should measure +12V and even pins should measure at GND
level.*

Figure 2.

�

� �

�
I�

I6

I�
I�5

I��

App/Tech Note: IO50/100-01 5

OriginalInterface Technology

IO53 and IO130 Backplane Voltages

Considering the list of availble power supplies on the VXI bus, a multi-
tude of applications can be accommodated by tapping into the proper
resources. Most logic families, TTL and CMOS use +5 Vdc as their main
power source e.g., microprocessors and memory chips. RS-232C trans-
mitters and receivers, op-amps, D/A and A/D converters are applications
that may require ±12 Vdc. Higher voltage applications can use the ±24 V
levels from the VXI backplane. The flexibility of the IO130 and IO53
high voltage modules give the user choices of implementation to supply
user defined voltage or use resouces already present on the VXI
backplane.

Conclusion

App/Tech Note: IO50/100-01

Interface Technology

6 IO53 and IO130 Backplane Voltages

Original

(THIS PAGE INTENTIONALLY LEFT BLANK)

© Copyright 2000-2005. All Rights Reserved.

Interface Technology, Inc.
300 S. Lemon Creek Dr., Walnut, CA 91789

Tel: 909/595-6030 - Fax: 909/595-7177
e-mail: info@interfacetech.com - Internet: www.interfacetech.com

